Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic reciprocity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Other rings == There are also quadratic reciprocity laws in [[ring (mathematics)|ring]]s other than the integers. ===Gaussian integers=== In his second monograph on [[quartic reciprocity]]<ref>Gauss, BQ § 60</ref> Gauss stated quadratic reciprocity for the ring <math>\Z[i]</math> of [[Gaussian integer]]s, saying that it is a corollary of the [[quartic reciprocity|biquadratic law]] in <math>\Z[i],</math> but did not provide a proof of either theorem. [[Peter Gustav Lejeune Dirichlet|Dirichlet]]<ref>Dirichlet's proof is in Lemmermeyer, Prop. 5.1 p.154, and Ireland & Rosen, ex. 26 p. 64</ref> showed that the law in <math>\Z[i]</math> can be deduced from the law for <math>\Z</math> without using quartic reciprocity. For an odd Gaussian prime <math>\pi</math> and a Gaussian integer <math>\alpha</math> relatively prime to <math>\pi,</math> define the quadratic character for <math>\Z[i]</math> by: :<math>\left[\frac{\alpha}{\pi}\right]_2 \equiv \alpha^\frac{\mathrm{N} \pi - 1}{2}\bmod{\pi} = \begin{cases} 1 & \exists \eta \in \Z[i]: \alpha \equiv \eta^2 \bmod{\pi} \\ -1 & \text{otherwise} \end{cases} </math> Let <math>\lambda = a + b i, \mu = c + d i</math> be distinct Gaussian primes where ''a'' and ''c'' are odd and ''b'' and ''d'' are even. Then<ref>Lemmermeyer, Prop. 5.1, p. 154</ref> :<math> \left [\frac{\lambda}{\mu}\right ]_2 = \left [\frac{\mu}{\lambda}\right ]_2, \qquad \left [\frac{i}{\lambda}\right ]_2 =(-1)^\frac{b}{2}, \qquad \left [\frac{1+i}{\lambda}\right ]_2 =\left(\frac{2}{a+b}\right).</math> ===Eisenstein integers=== Consider the following third root of unity: :<math>\omega = \frac{-1 + \sqrt{-3}}{2}=e^\frac{2\pi \imath}{3}.</math> The ring of Eisenstein integers is <math>\Z[\omega].</math><ref>See the articles on [[Eisenstein integer]] and [[cubic reciprocity]] for definitions and notations.</ref> For an Eisenstein prime <math>\pi, \mathrm{N} \pi \neq 3,</math> and an Eisenstein integer <math>\alpha</math> with <math>\gcd(\alpha, \pi) = 1,</math> define the quadratic character for <math>\Z[\omega]</math> by the formula :<math>\left[\frac{\alpha}{\pi}\right]_2 \equiv \alpha^\frac{\mathrm{N} \pi - 1}{2}\bmod{\pi} = \begin{cases} 1 &\exists \eta \in \Z[\omega]: \alpha \equiv \eta^2 \bmod{\pi} \\ -1 &\text{otherwise} \end{cases}</math> Let λ = ''a'' + ''bω'' and μ = ''c'' + ''dω'' be distinct Eisenstein primes where ''a'' and ''c'' are not divisible by 3 and ''b'' and ''d'' are divisible by 3. Eisenstein proved<ref>Lemmermeyer, Thm. 7.10, p. 217</ref> :<math> \left[\frac{\lambda}{\mu}\right]_2 \left [\frac{\mu}{\lambda}\right ]_2 = (-1)^{\frac{\mathrm{N} \lambda - 1}{2}\frac{\mathrm{N} \mu-1}{2}}, \qquad \left [\frac{1-\omega}{\lambda}\right ]_2 =\left(\frac{a}{3}\right), \qquad \left [\frac{2}{\lambda}\right ]_2 =\left (\frac{2}{\mathrm{N} \lambda }\right).</math> ===Imaginary quadratic fields=== The above laws are special cases of more general laws that hold for the [[ring of integers]] in any [[Quadratic field|imaginary quadratic number field]]. Let ''k'' be an imaginary quadratic number field with ring of integers <math>\mathcal{O}_k.</math> For a [[Number field#Prime ideals|prime ideal]] <math>\mathfrak{p} \subset \mathcal{O}_k </math> with odd norm <math>\mathrm{N} \mathfrak{p}</math> and <math>\alpha\in \mathcal{O}_k,</math> define the quadratic character for <math>\mathcal{O}_k </math> as :<math>\left[\frac{\alpha}{\mathfrak{p} }\right]_2 \equiv \alpha^{\frac{\mathrm{N} \mathfrak{p} - 1}{2}} \bmod{\mathfrak{p}} = \begin{cases} 1 &\alpha\not\in \mathfrak{p} \text{ and } \exists \eta \in \mathcal{O}_k \text{ such that } \alpha - \eta^2 \in \mathfrak{p} \\ -1 & \alpha\not\in \mathfrak{p} \text{ and there is no such } \eta \\ 0 & \alpha\in \mathfrak{p} \end{cases}</math> for an arbitrary ideal <math>\mathfrak{a} \subset \mathcal{O}_k</math> factored into prime ideals <math>\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_n</math> define :<math>\left [\frac{\alpha}{\mathfrak{a}}\right ]_2 = \left[\frac{\alpha}{\mathfrak{p}_1 }\right]_2\cdots \left[\frac{\alpha}{\mathfrak{p}_n }\right]_2,</math> and for <math>\beta \in \mathcal{O}_k</math> define :<math>\left [\frac{\alpha}{\beta}\right ]_2 = \left [\frac{\alpha}{\beta \mathcal{O}_k}\right ]_2. </math> Let <math>\mathcal{O}_k = \Z \omega_1\oplus \Z \omega_2,</math> i.e. <math>\left\{\omega_1, \omega_2\right\}</math> is an [[Number field#Integral basis|integral basis]] for <math>\mathcal{O}_k.</math> For <math>\nu \in \mathcal{O}_k</math> with odd norm <math>\mathrm{N}\nu,</math> define (ordinary) integers ''a'', ''b'', ''c'', ''d'' by the equations, :<math>\begin{align} \nu\omega_1&=a\omega_1+b\omega_2\\ \nu\omega_2&=c\omega_1+d\omega_2 \end{align}</math> and a function :<math>\chi(\nu) := \imath^{(b^2-a+2)c+(a^2-b+2)d+ad}.</math> If ''m'' = ''Nμ'' and ''n'' = ''Nν'' are both odd, Herglotz proved<ref>Lemmermeyer, Thm 8.15, p.256 ff</ref> :<math> \left [\frac{\mu}{\nu}\right ]_2 \left[\frac{\nu}{\mu}\right]_2 = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} \chi(\mu)^{m\frac{n-1}{2}} \chi(\nu)^{-n\frac{m-1}{2}}. </math> Also, if :<math> \mu \equiv\mu' \bmod{4} \quad \text{and} \quad \nu \equiv\nu' \bmod{4}</math> Then<ref>Lemmermeyer Thm. 8.18, p. 260</ref> :<math> \left [\frac{\mu}{\nu}\right ]_2 \left[\frac{\nu}{\mu}\right]_2 = \left [\frac{\mu'}{\nu'}\right ]_2 \left[\frac{\nu'}{\mu'}\right]_2.</math> ===Polynomials over a finite field=== Let ''F'' be a [[finite field]] with ''q'' = ''p<sup>n</sup>'' elements, where ''p'' is an odd prime number and ''n'' is positive, and let ''F''[''x''] be the [[Polynomial ring|ring of polynomials]] in one variable with coefficients in ''F''. If <math>f,g \in F[x]</math> and ''f'' is [[Irreducible polynomial|irreducible]], [[Monic polynomial|monic]], and has positive degree, define the quadratic character for ''F''[''x''] in the usual manner: :<math>\left(\frac{g}{f}\right) = \begin{cases} 1 & \gcd(f,g)=1 \text{ and } \exists h,k \in F[x] \text{ such that }g-h^2 = kf \\ -1 & \gcd(f,g)=1 \text{ and } g \text{ is not a square}\bmod{f}\\ 0 & \gcd(f,g)\ne 1 \end{cases} </math> If <math>f=f_1 \cdots f_n</math> is a product of monic irreducibles let :<math>\left(\frac{g}{f}\right) = \left(\frac{g}{f_1}\right) \cdots \left(\frac{g}{f_n}\right). </math> Dedekind proved that if <math>f,g \in F[x]</math> are monic and have positive degrees,<ref>Bach & Shallit, Thm. 6.7.1</ref> :<math>\left(\frac{g}{f}\right) \left(\frac{f}{g}\right) = (-1)^{\frac{q-1}{2}(\deg f)(\deg g)}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)