Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quantum supremacy === Physicist [[John Preskill]] coined the term ''quantum supremacy'' to describe the engineering feat of demonstrating that a programmable quantum device can solve a problem beyond the capabilities of state-of-the-art classical computers.<ref>{{cite arXiv |last=Preskill |first=John |date=2012-03-26 |title=Quantum computing and the entanglement frontier |eprint=1203.5813 |class=quant-ph}}</ref><ref>{{Cite journal|last=Preskill |first=John |date=2018-08-06 |title=Quantum Computing in the NISQ era and beyond |journal=Quantum |volume=2 |pages=79 |doi=10.22331/q-2018-08-06-79 |arxiv=1801.00862 |bibcode=2018Quant...2...79P |doi-access=free}}</ref><ref>{{Cite journal |title=Characterizing Quantum Supremacy in Near-Term Devices|journal=Nature Physics |volume=14 |issue=6 |pages=595β600 |first1=Sergio |last1=Boixo |first2=Sergei V. |last2=Isakov |first3=Vadim N. |last3=Smelyanskiy |first4=Ryan |last4=Babbush |first5=Nan |last5=Ding |first6=Zhang |last6=Jiang |first7=Michael J. |last7=Bremner |first8=John M. |last8=Martinis |first9=Hartmut |last9=Neven |display-authors=5 |year=2018 |arxiv=1608.00263 |doi=10.1038/s41567-018-0124-x |bibcode=2018NatPh..14..595B |s2cid=4167494}}</ref> The problem need not be useful, so some view the quantum supremacy test only as a potential future benchmark.<ref>{{cite web |first=Neil |last=Savage |date=5 July 2017 |url=https://www.scientificamerican.com/article/quantum-computers-compete-for-supremacy/ |title=Quantum Computers Compete for "Supremacy" |work=Scientific American}}</ref> In October 2019, Google AI Quantum, with the help of NASA, became the first to claim to have achieved quantum supremacy by performing calculations on the [[Sycamore processor|Sycamore quantum computer]] more than 3,000,000 times faster than they could be done on [[Summit (supercomputer)|Summit]], generally considered the world's fastest computer.<ref name="1910.11333"/><ref>{{cite web |last=Giles |first=Martin |date=September 20, 2019 |title=Google researchers have reportedly achieved 'quantum supremacy' |website=MIT Technology Review |language=en |url=https://www.technologyreview.com/f/614416/google-researchers-have-reportedly-achieved-quantum-supremacy/ |access-date=May 15, 2020}}</ref><ref>{{Cite web |last=Tavares |first=Frank |date=2019-10-23 |title=Google and NASA Achieve Quantum Supremacy |url=http://www.nasa.gov/feature/ames/quantum-supremacy |access-date=2021-11-16 |website=NASA |language=en-US}}</ref> This claim has been subsequently challenged: IBM has stated that Summit can perform samples much faster than claimed,<ref>{{cite arXiv |last1=Pednault |first1=Edwin |last2=Gunnels |first2=John A. |last3=Nannicini |first3=Giacomo |last4=Horesh |first4=Lior |last5=Wisnieff |first5=Robert |date=2019-10-22|title=Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits |class=quant-ph |eprint=1910.09534}}</ref><ref>{{Cite journal |last=Cho |first=Adrian |date=2019-10-23 |title=IBM casts doubt on Google's claims of quantum supremacy |url=https://www.science.org/content/article/ibm-casts-doubt-googles-claims-quantum-supremacy |journal=Science |doi=10.1126/science.aaz6080 |s2cid=211982610 |issn=0036-8075}}</ref> and researchers have since developed better algorithms for the sampling problem used to claim quantum supremacy, giving substantial reductions to the gap between Sycamore and classical supercomputers<ref>{{Cite book |last1=Liu |first1=Yong (Alexander) |last2=Liu |first2=Xin (Lucy) |last3=Li |first3=Fang (Nancy) |last4=Fu |first4=Haohuan |last5=Yang |first5=Yuling |last6=Song |first6=Jiawei |last7=Zhao |first7=Pengpeng |last8=Wang |first8=Zhen |last9=Peng |first9=Dajia |last10=Chen |first10=Huarong |last11=Guo |first11=Chu |title=Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis |chapter=Closing the "quantum supremacy" gap |display-authors=5 |date=2021-11-14 |series=SC '21 |location=New York, New York |publisher=Association for Computing Machinery |pages=1β12 |arxiv=2110.14502 |doi=10.1145/3458817.3487399 |isbn=978-1-4503-8442-1 |s2cid=239036985}}</ref><ref>{{Cite journal |last1=Bulmer |first1=Jacob F. F. |last2=Bell |first2=Bryn A. |last3=Chadwick |first3=Rachel S. |last4=Jones |first4=Alex E. |last5=Moise |first5=Diana |last6=Rigazzi |first6=Alessandro |last7=Thorbecke |first7=Jan |last8=Haus |first8=Utz-Uwe |last9=Van Vaerenbergh |first9=Thomas |last10=Patel |first10=Raj B. |last11=Walmsley |first11=Ian A. |display-authors=5 |date=2022-01-28 |title=The boundary for quantum advantage in Gaussian boson sampling |journal=Science Advances |language=en |volume=8 |issue=4 |pages=eabl9236 |doi=10.1126/sciadv.abl9236 |issn=2375-2548 |pmc=8791606 |pmid=35080972 |arxiv=2108.01622 |bibcode=2022SciA....8.9236B}}</ref><ref>{{Cite journal |last=McCormick |first=Katie |date=2022-02-10 |title=Race Not Over Between Classical and Quantum Computers |url=https://physics.aps.org/articles/v15/19 |journal=Physics |language=en |volume=15|page=19 |doi=10.1103/Physics.15.19 |bibcode=2022PhyOJ..15...19M |s2cid=246910085 |doi-access=free }}</ref> and even beating it.<ref>{{Cite journal |title=Solving the Sampling Problem of the Sycamore Quantum Circuits |journal=Physical Review Letters |arxiv=2111.03011 |last1=Pan |first1=Feng |last2=Chen |first2=Keyang |last3=Zhang |first3=Pan |year=2022 |volume=129 |issue=9 |page=090502 |doi=10.1103/PhysRevLett.129.090502 |pmid=36083655 |bibcode=2022PhRvL.129i0502P |s2cid=251755796}}</ref><ref>{{Cite journal |author=Cho |first=Adrian |date=2022-08-02 |title=Ordinary computers can beat Google's quantum computer after all |url=https://www.science.org/content/article/ordinary-computers-can-beat-google-s-quantum-computer-after-all |journal=Science |volume=377 |doi=10.1126/science.ade2364}}</ref><ref>{{Cite web |title=Google's 'quantum supremacy' usurped by researchers using ordinary supercomputer |url=https://techcrunch.com/2022/08/05/googles-quantum-supremacy-usurped-by-researchers-using-ordinary-supercomputer/ |access-date=2022-08-07 |website=TechCrunch |date=5 August 2022 |language=en-US}}</ref> In December 2020, a group at [[University of Science and Technology of China|USTC]] implemented a type of [[Boson sampling]] on 76 photons with a [[Linear optical quantum computing|photonic quantum computer]], [[Jiuzhang (quantum computer)|Jiuzhang]], to demonstrate quantum supremacy.<ref>{{Cite journal |last=Ball |first=Philip |date=2020-12-03 |title=Physicists in China challenge Google's 'quantum advantage' |journal=Nature |volume=588 |issue=7838 |page=380 |language=en |doi=10.1038/d41586-020-03434-7 |pmid=33273711 |bibcode=2020Natur.588..380B |s2cid=227282052 |doi-access=}}</ref><ref>{{Cite web |last=Garisto |first=Daniel |title=Light-based Quantum Computer Exceeds Fastest Classical Supercomputers |url=https://www.scientificamerican.com/article/light-based-quantum-computer-exceeds-fastest-classical-supercomputers/ |access-date=2020-12-07 |website=Scientific American |language=en}}</ref><ref>{{Cite web |last=Conover |first=Emily |date=2020-12-03 |title=The new light-based quantum computer Jiuzhang has achieved quantum supremacy |url=https://www.sciencenews.org/article/new-light-based-quantum-computer-jiuzhang-supremacy |access-date=2020-12-07 |website=Science News |language=en-US}}</ref> The authors claim that a classical contemporary supercomputer would require a computational time of 600 million years to generate the number of samples their quantum processor can generate in 20 seconds.<ref name=":6">{{Cite journal |last1=Zhong |first1=Han-Sen |last2=Wang |first2=Hui |last3=Deng |first3=Yu-Hao |last4=Chen |first4=Ming-Cheng |last5=Peng |first5=Li-Chao |last6=Luo |first6=Yi-Han |last7=Qin |first7=Jian |last8=Wu |first8=Dian |last9=Ding |first9=Xing |last10=Hu |first10=Yi |last11=Hu |first11=Peng |display-authors=5 |date=2020-12-03 |title=Quantum computational advantage using photons |journal=Science |volume=370 |issue=6523 |pages=1460β1463 |language=en |doi=10.1126/science.abe8770 |issn=0036-8075 |pmid=33273064 |arxiv=2012.01625 |bibcode=2020Sci...370.1460Z |s2cid=227254333}}</ref> Claims of quantum supremacy have generated hype around quantum computing,<ref>{{Cite journal |last=Roberson |first=Tara M. |date=2020-05-21 |title={{subst:title case|Can hype be a force for good?}} |journal=Public Understanding of Science |language=en |volume=29 |issue=5 |pages=544β552 |doi=10.1177/0963662520923109 |pmid=32438851 |s2cid=218831653 |issn=0963-6625|doi-access=free }}</ref> but they are based on contrived benchmark tasks that do not directly imply useful real-world applications.<ref name="good-for-nothing" /><ref>{{Cite journal |last1=Cavaliere |first1=Fabio |last2=Mattsson |first2=John |last3=Smeets |first3=Ben |date=September 2020 |title=The security implications of quantum cryptography and quantum computing |url=http://www.magonlinelibrary.com/doi/10.1016/S1353-4858%2820%2930105-7 |journal=Network Security |language=en |volume=2020 |issue=9 |pages=9β15 |doi=10.1016/S1353-4858(20)30105-7 |s2cid=222349414 |issn=1353-4858}}</ref> In January 2024, a study published in ''Physical Review Letters'' provided direct verification of quantum supremacy experiments by computing exact amplitudes for experimentally generated bitstrings using a new-generation Sunway supercomputer, demonstrating a significant leap in simulation capability built on a multiple-amplitude tensor network contraction algorithm. This development underscores the evolving landscape of quantum computing, highlighting both the progress and the complexities involved in validating quantum supremacy claims.<ref>{{Cite journal |last1=Liu |first1=Yong |last2=Chen |first2=Yaojian |last3=Guo |first3=Chu |last4=Song |first4=Jiawei |last5=Shi |first5=Xinmin |last6=Gan |first6=Lin |last7=Wu |first7=Wenzhao |last8=Wu |first8=Wei |last9=Fu |first9=Haohuan |last10=Liu |first10=Xin |last11=Chen |first11=Dexun |last12=Zhao |first12=Zhifeng |last13=Yang |first13=Guangwen |last14=Gao |first14=Jiangang |date=2024-01-16 |title=Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction |url=https://link.aps.org/doi/10.1103/PhysRevLett.132.030601 |journal=Physical Review Letters |language=en |volume=132 |issue=3 |page=030601 |doi=10.1103/PhysRevLett.132.030601 |pmid=38307065 |issn=0031-9007|arxiv=2212.04749 |bibcode=2024PhRvL.132c0601L }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)