Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ratio test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == *{{citation | last1=d'Alembert| first1=J.|author-link=Jean le Rond d'Alembert| year=1768 | title=Opuscules |volume=V|pages=171β183| url=http://gallica.bnf.fr/ark:/12148/bpt6k62424s.image.f192}}. *{{Citation | last1=Apostol | first1=Tom M. | author1-link=Tom M. Apostol | title=Mathematical analysis | publisher=[[Addison-Wesley]] | edition=2nd | isbn=978-0-201-00288-1 | year=1974}}: Β§8.14. * {{citation<!--Deny Citation Bot-->|last=Knopp|first=Konrad|title=Infinite Sequences and Series|location=New York |publisher=Dover Publications|year=1956|isbn=978-0-486-60153-3|bibcode=1956iss..book.....K}}: Β§3.3, 5.4. * {{citation|last=Rudin|first=Walter|author-link=Walter Rudin|title=Principles of Mathematical Analysis|edition=3rd|publisher=McGraw-Hill, Inc.|location=New York|year=1976|isbn=978-0-07-054235-8}}: Β§3.34. * {{springer|title=Bertrand criterion|id=p/b015780}} * {{springer|title=Gauss criterion|id=p/g043420}} * {{springer|title=Kummer criterion|id=p/k055950}} * {{citation|last2=Whittaker|first2=E. T.|last1=Watson|first1=G. N.|title=A Course in Modern Analysis|edition=4th|publisher=Cambridge University Press|year=1963|isbn=978-0-521-58807-2}}: Β§2.36, 2.37. {{Calculus topics}} [[Category:Convergence tests]] [[Category:Articles containing proofs]] [[it:Criteri di convergenza#Criterio del rapporto (o di d'Alembert)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)