Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scientific method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Scientific inquiry== Scientific inquiry generally aims to obtain [[knowledge]] in the form of [[#suitableTest|testable explanations]]<ref name="SuitableTest">Peirce, Charles S., Carnegie application (L75, 1902), ''New Elements of Mathematics'' v. 4, pp. 37–38: "For it is not sufficient that a hypothesis should be a justifiable one. Any hypothesis that explains the facts is justified critically. But among justifiable hypotheses we have to select that one which is suitable for being tested by experiment."</ref><ref name="econ">Peirce, Charles S. (1902), Carnegie application, see MS L75.329330, from [http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-08.htm#m27 Draft D] {{Webarchive|url=https://web.archive.org/web/20110524021101/http://www.cspeirce.com/menu/library/bycsp/l75/ver1/l75v1-08.htm#m27|date=2011-05-24}} of Memoir 27: "Consequently, to discover is simply to expedite an event that would occur sooner or later, if we had not troubled ourselves to make the discovery. Consequently, the art of discovery is purely a question of economics. The economics of research is, so far as logic is concerned, the leading doctrine concerning the art of discovery. Consequently, the conduct of abduction, which is chiefly a question of heuretic and is the first question of heuretic, is to be governed by economical considerations."</ref> that scientists can use to [[Predictability|predict]] the results of future experiments. This allows scientists to gain a better understanding of the topic under study, and later to use that understanding to intervene in its causal mechanisms (such as to cure disease). The better an explanation is at making predictions, the more useful it frequently can be, and the more likely it will continue to explain a body of evidence better than its alternatives. The most successful explanations – those that explain and make accurate predictions in a wide range of circumstances – are often called [[scientific theories]].{{efn-ua|name= aQuestion}} Most experimental results do not produce large changes in human understanding; improvements in theoretical scientific understanding typically result from a gradual process of development over time, sometimes across different domains of science.<ref>Stanovich, Keith E. (2007). ''How to Think Straight About Psychology''. Boston: Pearson Education. p. 123</ref> Scientific models vary in the extent to which they have been experimentally tested and for how long, and in their acceptance in the scientific community. In general, explanations become accepted over time as evidence accumulates on a given topic, and the explanation in question proves more powerful than its alternatives at explaining the evidence. Often subsequent researchers re-formulate the explanations over time, or combined explanations to produce new explanations. ===Properties of scientific inquiry=== Scientific knowledge is closely tied to [[Empirical evidence|empirical findings]] and can remain subject to [[falsifiability|falsification]] if new experimental observations are incompatible with what is found. That is, no theory can ever be considered final since new problematic evidence might be discovered. If such evidence is found, a new theory may be proposed, or (more commonly) it is found that modifications to the previous theory are sufficient to explain the new evidence. The strength of a theory relates to how long it has persisted without major alteration to its core principles. Theories can also become subsumed by other theories. For example, Newton's laws explained thousands of years of scientific observations of the planets [[#precession of Mercury|almost perfectly]]. However, these laws were then determined to be special cases of a more general theory ([[Theory of relativity|relativity]]), which explained both the (previously unexplained) exceptions to Newton's laws and predicted and explained other observations such as the deflection of [[light]] by [[gravity]]. Thus, in certain cases independent, unconnected, scientific observations can be connected, unified by principles of increasing explanatory power.{{sfnp|Brody|1993 |pp=44–45}}{{sfnp|Goldhaber|Nieto|2010|page=942}} Since new theories might be more comprehensive than what preceded them, and thus be able to explain more than previous ones, successor theories might be able to meet a higher standard by explaining a larger body of observations than their predecessors.{{sfnp|Brody|1993|pp=44–45}} For example, the theory of [[evolution]] explains the [[Biodiversity|diversity of life on Earth]], how species adapt to their environments, and many other [[pattern]]s observed in the natural world;<ref name="Hall08">{{cite book |editor1-last = Hall |editor1-first = B.K. |editor2-last = Hallgrímsson |editor2-first = B. |title = Strickberger's Evolution |year = 2008 |edition = 4th |publisher = Jones & Bartlett |isbn = 978-0-7637-0066-9 |url = https://archive.org/details/strickbergersevo0000hall/page/762 |page = [https://archive.org/details/strickbergersevo0000hall/page/762 762] }}</ref><ref name="Cracraft05">{{cite book | editor1-last = Cracraft | editor1-first = J. | editor2-last = Donoghue | editor2-first = M.J. | title = Assembling the tree of life | publisher = Oxford University Press | year = 2005 | page = 592 | isbn = 978-0-19-517234-8 | url = https://books.google.com/books?id=6lXTP0YU6_kC&q=Assembling+the+tree+of+life | access-date = 2020-10-20 | archive-date = 2023-11-29 | archive-url = https://web.archive.org/web/20231129112730/https://books.google.com/books?id=6lXTP0YU6_kC&q=Assembling+the+tree+of+life#v=snippet&q=Assembling%20the%20tree%20of%20life&f=false | url-status = live }}</ref> its most recent major modification was unification with [[genetics]] to form the [[Extended evolutionary synthesis|modern evolutionary synthesis]]. In subsequent modifications, it has also subsumed aspects of many other fields such as [[biochemistry]] and [[molecular biology]]. <!--(hidden; reason: completely unsourced (A translation of Aristotle cannot possibly be a source for "The classical model of scientific inquiry derives from Aristotle".) ===Models of scientific inquiry=== {{Main|Models of scientific inquiry}} The classical model of scientific inquiry [[History of scientific method#Aristotle|derives from Aristotle]],<ref> {{cite book |author=[[Aristotle]] |chapter=[[Prior Analytics]] |translator=Hugh Tredennick |pages=181–531 |title=Aristotle, Volume 1 |series=[[Loeb Classical Library]] |publisher=William Heinemann |place=London |year=1938}} </ref> who distinguished the forms of approximate and exact reasoning, set out the threefold scheme of [[abductive reasoning|abductive]], [[deductive reasoning|deductive]], and [[inductive reasoning|inductive]] [[inference]], and also treated the compound forms such as reasoning by [[analogy]]. The [[hypothetico-deductive model]] or method is a proposed description of the scientific method. Here, predictions from the hypothesis are central: if one assumes the hypothesis to be true, what consequences follow? If a subsequent empirical investigation does not demonstrate that these consequences or predictions correspond to the observable world, the hypothesis can be concluded to be false. -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)