Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Singular value decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Based on the spectral theorem === Let <math>\mathbf{M}</math> be an {{tmath|m \times n}} complex matrix. Since <math>\mathbf{M}^* \mathbf{M}</math> is positive semi-definite and Hermitian, by the [[spectral theorem]], there exists an {{tmath|n \times n}} unitary matrix <math>\mathbf{V}</math> such that <math display=block> \mathbf V^* \mathbf M^* \mathbf M \mathbf V = \bar\mathbf{D} = \begin{bmatrix} \mathbf{D} & 0 \\ 0 & 0\end{bmatrix}, </math> where <math>\mathbf{D}</math> is diagonal and positive definite, of dimension <math>\ell\times \ell</math>, with <math>\ell</math> the number of non-zero eigenvalues of <math>\mathbf{M}^* \mathbf{M}</math> (which can be shown to verify <math>\ell\le\min(n,m)</math>). Note that <math>\mathbf{V}</math> is here by definition a matrix whose <math>i</math>-th column is the <math>i</math>-th eigenvector of <math>\mathbf{M}^* \mathbf{M}</math>, corresponding to the eigenvalue <math>\bar{\mathbf{D}}_{ii}</math>. Moreover, the <math>j</math>-th column of <math>\mathbf{V}</math>, for <math>j>\ell</math>, is an eigenvector of <math>\mathbf{M}^* \mathbf{M}</math> with eigenvalue <math>\bar{\mathbf{D}}_{jj}=0</math>. This can be expressed by writing <math>\mathbf{V}</math> as <math>\mathbf{V}=\begin{bmatrix}\mathbf{V}_1 &\mathbf{V}_2\end{bmatrix}</math>, where the columns of <math>\mathbf{V}_1</math> and <math>\mathbf{V}_2</math> therefore contain the eigenvectors of <math>\mathbf{M}^* \mathbf{M}</math> corresponding to non-zero and zero eigenvalues, respectively. Using this rewriting of <math>\mathbf{V}</math>, the equation becomes: <math display=block> \begin{bmatrix} \mathbf{V}_1^* \\ \mathbf{V}_2^* \end{bmatrix} \mathbf{M}^* \mathbf{M}\, \begin{bmatrix} \mathbf{V}_1 & \!\! \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{V}_1^* \mathbf{M}^* \mathbf{M} \mathbf{V}_1 & \mathbf{V}_1^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2 \\ \mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_1 & \mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{D} & 0 \\ 0 & 0 \end{bmatrix}.</math> This implies that <math display=block> \mathbf{V}_1^* \mathbf{M}^* \mathbf{M} \mathbf{V}_1 = \mathbf{D}, \quad \mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2 = \mathbf{0}. </math> Moreover, the second equation implies <math>\mathbf{M}\mathbf{V}_2 = \mathbf{0}</math>.<ref>To see this, we just have to notice that <math>\operatorname{Tr}(\mathbf{V}_2^* \mathbf{M}^* \mathbf{M} \mathbf{V}_2) = \|\mathbf{M} \mathbf{V}_2\|^2</math>, and remember that <math>\|A\| = 0 \Leftrightarrow A = 0</math>.</ref> Finally, the unitary-ness of <math>\mathbf{V}</math> translates, in terms of <math>\mathbf{V}_1</math> and <math>\mathbf{V}_2</math>, into the following conditions: <math display=block>\begin{align} \mathbf{V}_1^* \mathbf{V}_1 &= \mathbf{I}_1, \\ \mathbf{V}_2^* \mathbf{V}_2 &= \mathbf{I}_2, \\ \mathbf{V}_1 \mathbf{V}_1^* + \mathbf{V}_2 \mathbf{V}_2^* &= \mathbf{I}_{12}, \end{align}</math> where the subscripts on the identity matrices are used to remark that they are of different dimensions. Let us now define <math display=block> \mathbf{U}_1 = \mathbf{M} \mathbf{V}_1 \mathbf{D}^{-\frac{1}{2}}. </math> Then, <math display=block> \mathbf{U}_1 \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* = \mathbf{M} \mathbf{V}_1 \mathbf{D}^{-\frac{1}{2}} \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* = \mathbf{M} (\mathbf{I} - \mathbf{V}_2\mathbf{V}_2^*) = \mathbf{M} - (\mathbf{M}\mathbf{V}_2)\mathbf{V}_2^* = \mathbf{M}, </math> since <math>\mathbf{M}\mathbf{V}_2 = \mathbf{0}. </math> This can be also seen as immediate consequence of the fact that <math>\mathbf{M}\mathbf{V}_1\mathbf{V}_1^* = \mathbf{M}</math>. This is equivalent to the observation that if <math>\{\boldsymbol v_i\}_{i=1}^\ell</math> is the set of eigenvectors of <math>\mathbf{M}^* \mathbf{M}</math> corresponding to non-vanishing eigenvalues <math>\{\lambda_i\}_{i=1}^\ell</math>, then <math>\{\mathbf M \boldsymbol v_i\}_{i=1}^\ell</math> is a set of orthogonal vectors, and <math>\bigl\{\lambda_i^{-1/2}\mathbf M \boldsymbol v_i\bigr\}\vphantom|_{i=1}^\ell</math> is a (generally not complete) set of ''orthonormal'' vectors. This matches with the matrix formalism used above denoting with <math>\mathbf{V}_1</math> the matrix whose columns are <math>\{\boldsymbol v_i\}_{i=1}^\ell</math>, with <math>\mathbf{V}_2</math> the matrix whose columns are the eigenvectors of <math>\mathbf{M}^* \mathbf{M}</math> with vanishing eigenvalue, and <math>\mathbf{U}_1</math> the matrix whose columns are the vectors <math>\bigl\{\lambda_i^{-1/2}\mathbf M \boldsymbol v_i\bigr\}\vphantom|_{i=1}^\ell</math>. We see that this is almost the desired result, except that <math>\mathbf{U}_1</math> and <math>\mathbf{V}_1</math> are in general not unitary, since they might not be square. However, we do know that the number of rows of <math>\mathbf{U}_1</math> is no smaller than the number of columns, since the dimensions of <math>\mathbf{D}</math> is no greater than <math>m</math> and <math>n</math>. Also, since <math display=block> \mathbf{U}_1^*\mathbf{U}_1 = \mathbf{D}^{-\frac{1}{2}}\mathbf{V}_1^*\mathbf{M}^*\mathbf{M} \mathbf{V}_1 \mathbf{D}^{-\frac{1}{2}}=\mathbf{D}^{-\frac{1}{2}}\mathbf{D}\mathbf{D}^{-\frac{1}{2}} = \mathbf{I_1}, </math> the columns in <math>\mathbf{U}_1</math> are orthonormal and can be extended to an orthonormal basis. This means that we can choose <math>\mathbf{U}_2</math> such that <math>\mathbf{U} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix}</math> is unitary. For {{tmath|\mathbf V_1}} we already have {{tmath|\mathbf V_2}} to make it unitary. Now, define <math display=block> \mathbf \Sigma = \begin{bmatrix} \begin{bmatrix} \mathbf{D}^\frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \\ 0 \end{bmatrix}, </math> where extra zero rows are added '''or removed''' to make the number of zero rows equal the number of columns of {{tmath|\mathbf U_2,}} and hence the overall dimensions of <math>\mathbf \Sigma</math> equal to <math>m\times n</math>. Then <math display=block> \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{}D^\frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix}^* = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* \\ 0 \end{bmatrix} = \mathbf{U}_1 \mathbf{D}^\frac{1}{2} \mathbf{V}_1^* = \mathbf{M}, </math> which is the desired result: <math display=block> \mathbf{M} = \mathbf{U} \mathbf \Sigma \mathbf{V}^*. </math> Notice the argument could begin with diagonalizing {{tmath|\mathbf M \mathbf M^*}} rather than {{tmath|\mathbf M^* \mathbf M}} (This shows directly that {{tmath|\mathbf M \mathbf M^*}} and {{tmath|\mathbf M^* \mathbf M}} have the same non-zero eigenvalues).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)