Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hardy's uncertainty principle === The mathematician [[G. H. Hardy]] formulated the following uncertainty principle:<ref>{{Citation|first=G.H.|last=Hardy|author-link=G. H. Hardy|title=A theorem concerning Fourier transforms|journal=Journal of the London Mathematical Society|volume=8|year=1933|issue=3|pages=227–231|doi=10.1112/jlms/s1-8.3.227}}</ref> it is not possible for {{mvar|f}} and {{math| ƒ̂}} to both be "very rapidly decreasing". Specifically, if {{mvar|f}} in <math>L^2(\mathbb{R})</math> is such that <math display="block">|f(x)|\leq C(1+|x|)^Ne^{-a\pi x^2}</math> and <math display="block">|\hat{f}(\xi)|\leq C(1+|\xi|)^Ne^{-b\pi \xi^2}</math> (<math>C>0,N</math> an integer), then, if {{math|1=''ab'' > 1, ''f'' = 0}}, while if {{math|1=''ab'' = 1}}, then there is a polynomial {{mvar|P}} of degree {{math|≤ ''N''}} such that <math display="block">f(x)=P(x)e^{-a\pi x^2}. </math> This was later improved as follows: if <math>f \in L^2(\mathbb{R}^d)</math> is such that <math display="block">\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}|f(x)||\hat{f}(\xi)|\frac{e^{\pi|\langle x,\xi\rangle|}}{(1+|x|+|\xi|)^N} \, dx \, d\xi < +\infty ~,</math> then <math display="block">f(x)=P(x)e^{-\pi\langle Ax,x\rangle} ~,</math> where {{mvar|P}} is a polynomial of degree {{math|(''N'' − ''d'')/2}} and {{mvar|A}} is a real {{math|''d'' × ''d''}} positive definite matrix. This result was stated in Beurling's complete works without proof and proved in Hörmander<ref>{{Citation | first=L. | last=Hörmander | author-link=Lars Hörmander|title=A uniqueness theorem of Beurling for Fourier transform pairs|journal= Ark. Mat. | volume=29|issue=1–2|year=1991|pages=231–240|bibcode=1991ArM....29..237H|doi=10.1007/BF02384339|s2cid=121375111 | doi-access=free}}</ref> (the case <math>d=1,N=0</math>) and Bonami, Demange, and Jaming<ref>{{Citation | first1=A. | last1=Bonami | author1-link= Aline Bonami |first2=B.|last2=Demange|first3=Ph.|last3=Jaming|title=Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms |journal= Rev. Mat. Iberoamericana | volume=19 | year=2003 | pages=23–55 | bibcode=2001math......2111B|arxiv=math/0102111| doi=10.4171/RMI/337|s2cid=1211391}}</ref> for the general case. Note that Hörmander–Beurling's version implies the case {{math|''ab'' > 1}} in Hardy's Theorem while the version by Bonami–Demange–Jaming covers the full strength of Hardy's Theorem. A different proof of Beurling's theorem based on Liouville's theorem appeared in ref.<ref>{{Citation|first=Haakan|last=Hedenmalm|title=Heisenberg's uncertainty principle in the sense of Beurling|journal=[[Journal d'Analyse Mathématique]] | volume=118 | issue=2 | year=2012 | pages=691–702 | doi=10.1007/s11854-012-0048-9 | doi-access=free | arxiv=1203.5222 | bibcode=2012arXiv1203.5222H | s2cid=54533890}}</ref> A full description of the case {{math|''ab'' < 1}} as well as the following extension to Schwartz class distributions appears in ref.<ref>{{Citation|first=Bruno|last=Demange|title=Uncertainty Principles Associated to Non-degenerate Quadratic Forms|year=2009|publisher= Société Mathématique de France|isbn=978-2-85629-297-6}}</ref> {{math theorem| If a tempered distribution <math>f\in\mathcal{S}'(\R^d)</math> is such that <math display="block">e^{\pi|x|^2}f\in\mathcal{S} '(\R^d)</math> and <math display="block">e^{\pi|\xi|^2}\hat f\in\mathcal{S}'(\R^d) ~,</math> then <math display="block">f(x)=P(x)e^{-\pi\langle Ax,x\rangle} ~,</math> for some convenient polynomial {{mvar|P}} and real positive definite matrix {{mvar|A}} of type {{math|''d'' × ''d''}}.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)