Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wave equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Solutions in ''D = 1, 2, 3'' === When <math>D=1</math>, the integrand in the Fourier transform is the [[sinc function]]<math display="block">\begin{aligned} G_1(t, x) &= \frac{1}{2\pi} \int_\R \frac{\sin(|\omega| t)}{|\omega|} e^{i\omega x}d\omega \\ &= \frac{1}{2\pi} \int \operatorname{sinc}(\omega) e^{i \omega \frac xt} d\omega \\ &= \frac{\sgn(t-x) + \sgn(t+x)}{4} \\ &= \begin{cases} \frac 12 \theta(t-|x|) \quad t > 0 \\ -\frac 12 \theta(-t-|x|) \quad t < 0 \end{cases} \end{aligned}</math> where <math>\sgn</math> is the [[sign function]] and <math>\theta</math> is the [[Heaviside step function|unit step function]]. One solution is the forward solution, the other is the backward solution. The dimension can be raised to give the <math>D=3</math> case<math display="block">G_3(t, r) = \frac{\delta(t-r)}{4\pi r}</math>and similarly for the backward solution. This can be integrated down by one dimension to give the <math>D=2</math> case<math display="block">G_2(t, r) = \int_\R \frac{\delta(t - \sqrt{r^2 + z^2})}{4\pi \sqrt{r^2 + z^2}} dz = \frac{\theta(t - r)}{2\pi \sqrt{t^2 - r^2}} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)