Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wiener process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integrated Brownian motion === The time-integral of the Wiener process <math display="block">W^{(-1)}(t) := \int_0^t W(s) \, ds</math> is called '''integrated Brownian motion''' or '''integrated Wiener process'''. It arises in many applications and can be shown to have the distribution ''N''(0, ''t''<sup>3</sup>/3),<ref>{{Cite web|url=http://www.quantopia.net/interview-questions-vii-integrated-brownian-motion/|title=Interview Questions VII: Integrated Brownian Motion β Quantopia| website=www.quantopia.net| language=en-US| access-date=2017-05-14}}</ref> calculated using the fact that the covariance of the Wiener process is <math> t \wedge s = \min(t, s)</math>.<ref>Forum, [http://wilmott.com/messageview.cfm?catid=4&threadid=39502 "Variance of integrated Wiener process"], 2009.</ref> For the general case of the process defined by <math display="block">V_f(t) = \int_0^t f'(s)W(s) \,ds=\int_0^t (f(t)-f(s))\,dW_s</math> Then, for <math>a > 0</math>, <math display="block">\operatorname{Var}(V_f(t))=\int_0^t (f(t)-f(s))^2 \,ds</math> <math display="block">\operatorname{cov}(V_f(t+a),V_f(t))=\int_0^t (f(t+a)-f(s))(f(t)-f(s)) \,ds</math> In fact, <math>V_f(t)</math> is always a zero mean normal random variable. This allows for simulation of <math>V_f(t+a)</math> given <math>V_f(t)</math> by taking <math display="block">V_f(t+a)=A\cdot V_f(t) +B\cdot Z</math> where ''Z'' is a standard normal variable and <math display="block">A=\frac{\operatorname{cov}(V_f(t+a),V_f(t))}{\operatorname{Var}(V_f(t))}</math> <math display="block">B^2=\operatorname{Var}(V_f(t+a))-A^2\operatorname{Var}(V_f(t))</math> The case of <math>V_f(t)=W^{(-1)}(t)</math> corresponds to <math>f(t)=t</math>. All these results can be seen as direct consequences of [[ItΓ΄ isometry]]. The ''n''-times-integrated Wiener process is a zero-mean normal variable with variance <math>\frac{t}{2n+1}\left ( \frac{t^n}{n!} \right )^2 </math>. This is given by the [[Cauchy formula for repeated integration]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)