Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Fourier kernels==== {{See also|Convergence of Fourier series}} In the study of [[Fourier series]], a major question consists of determining whether and in what sense the Fourier series associated with a [[periodic function]] converges to the function. The {{mvar|n}}-th partial sum of the Fourier series of a function {{mvar|f}} of period {{math|2π}} is defined by convolution (on the interval {{closed-closed|−π,π}}) with the [[Dirichlet kernel]]: <math display="block">D_N(x) = \sum_{n=-N}^N e^{inx} = \frac{\sin\left(\left(N+\frac12\right)x\right)}{\sin(x/2)}.</math> Thus, <math display="block">s_N(f)(x) = D_N*f(x) = \sum_{n=-N}^N a_n e^{inx}</math> where <math display="block">a_n = \frac{1}{2\pi}\int_{-\pi}^\pi f(y)e^{-iny}\,dy.</math> A fundamental result of elementary Fourier series states that the Dirichlet kernel restricted to the interval {{closed-closed|−π,π}} tends to a multiple of the delta function as {{math|''N'' → ∞}}. This is interpreted in the distribution sense, that <math display="block">s_N(f)(0) = \int_{-\pi}^{\pi} D_N(x)f(x)\,dx \to 2\pi f(0)</math> for every compactly supported {{em|smooth}} function {{mvar|f}}. Thus, formally one has <math display="block">\delta(x) = \frac1{2\pi} \sum_{n=-\infty}^\infty e^{inx}</math> on the interval {{closed-closed|−π,π}}. Despite this, the result does not hold for all compactly supported {{em|continuous}} functions: that is {{math|''D<sub>N</sub>''}} does not converge weakly in the sense of measures. The lack of convergence of the Fourier series has led to the introduction of a variety of [[summability methods]] to produce convergence. The method of [[Cesàro summation]] leads to the [[Fejér kernel]]{{sfn|Lang|1997|p=312}} <math display="block">F_N(x) = \frac1N\sum_{n=0}^{N-1} D_n(x) = \frac{1}{N}\left(\frac{\sin \frac{Nx}{2}}{\sin \frac{x}{2}}\right)^2.</math> The [[Fejér kernel]]s tend to the delta function in a stronger sense that<ref>In the terminology of {{harvtxt|Lang|1997}}, the Fejér kernel is a Dirac sequence, whereas the Dirichlet kernel is not.</ref> <math display="block">\int_{-\pi}^{\pi} F_N(x)f(x)\,dx \to 2\pi f(0)</math> for every compactly supported {{em|continuous}} function {{mvar|f}}. The implication is that the Fourier series of any continuous function is Cesàro summable to the value of the function at every point.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)