Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Differential operators acting on smooth functions==== A linear differential operator in <math>U</math> with smooth coefficients acts on the space of smooth functions on <math>U.</math> Given such an operator <math display=inline>P := \sum_\alpha c_\alpha \partial^\alpha,</math> we would like to define a continuous linear map, <math>D_P</math> that extends the action of <math>P</math> on <math>C^\infty(U)</math> to distributions on <math>U.</math> In other words, we would like to define <math>D_P</math> such that the following diagram [[Commutative diagram|commutes]]: <math display=block>\begin{matrix} \mathcal{D}'(U) & \stackrel{D_P}{\longrightarrow} & \mathcal{D}'(U) \\[2pt] \uparrow & & \uparrow \\[2pt] C^\infty(U) & \stackrel{P}{\longrightarrow} & C^\infty(U) \end{matrix}</math> where the vertical maps are given by assigning <math>f \in C^\infty(U)</math> its canonical distribution <math>D_f \in \mathcal{D}'(U),</math> which is defined by: <math display=block>D_f(\phi) = \langle f, \phi \rangle := \int_U f(x) \phi(x) \,dx \quad \text{ for all } \phi \in \mathcal{D}(U).</math> With this notation, the diagram commuting is equivalent to: <math display=block>D_{P(f)} = D_PD_f \qquad \text{ for all } f \in C^\infty(U).</math> To find <math>D_P,</math> the transpose <math>{}^{t} P : \mathcal{D}'(U) \to \mathcal{D}'(U)</math> of the continuous induced map <math>P : \mathcal{D}(U)\to \mathcal{D}(U)</math> defined by <math>\phi \mapsto P(\phi)</math> is considered in the lemma below. This leads to the following definition of the differential operator on <math>U</math> called {{em|the '''formal transpose''' of <math>P,</math>}} which will be denoted by <math>P_*</math> to avoid confusion with the transpose map, that is defined by <math display=block>P_* := \sum_\alpha b_\alpha \partial^\alpha \quad \text{ where } \quad b_\alpha := \sum_{\beta \geq \alpha} (-1)^{|\beta|} \binom{\beta}{\alpha} \partial^{\beta-\alpha} c_\beta.</math> {{math theorem|name=Lemma|math_statement= Let <math>P</math> be a linear differential operator with smooth coefficients in <math>U.</math> Then for all <math>\phi \in \mathcal{D}(U)</math> we have <math display=block>\left\langle {}^{t}P(D_f), \phi \right\rangle = \left\langle D_{P_*(f)}, \phi \right\rangle,</math> which is equivalent to: <math display=block>{}^{t}P(D_f) = D_{P_*(f)}.</math>}} {{collapse top|title=Proof|left=true}} As discussed above, for any <math>\phi \in \mathcal{D}(U),</math> the transpose may be calculated by: <math display=block>\begin{align} \left\langle {}^{t}P(D_f), \phi \right\rangle &= \int_U f(x) P(\phi)(x) \,dx \\ &= \int_U f(x) \left[\sum\nolimits_\alpha c_\alpha(x) (\partial^\alpha \phi)(x) \right] \,dx \\ &= \sum\nolimits_\alpha \int_U f(x) c_\alpha(x) (\partial^\alpha \phi)(x) \,dx \\ &= \sum\nolimits_\alpha (-1)^{|\alpha|} \int_U \phi(x) (\partial^\alpha(c_\alpha f))(x) \,d x \end{align}</math> For the last line we used [[integration by parts]] combined with the fact that <math>\phi</math> and therefore all the functions <math>f (x)c_\alpha (x) \partial^\alpha \phi(x)</math> have compact support.<ref group="note">For example, let <math>U = \R</math> and take <math>P</math> to be the ordinary derivative for functions of one real variable and assume the support of <math>\phi</math> to be contained in the finite interval <math>(a,b),</math> then since <math>\operatorname{supp}(\phi) \subseteq (a, b)</math> <math display=block>\begin{align} \int_\R \phi'(x)f(x)\,dx &= \int_a^b \phi'(x)f(x) \,dx \\ &= \phi(x)f(x)\big\vert_a^b - \int_a^b f'(x) \phi(x) \,d x \\ &= \phi(b)f(b) - \phi(a)f(a) - \int_a^b f'(x) \phi(x) \,d x \\ &=-\int_a^b f'(x) \phi(x) \,d x \end{align}</math> where the last equality is because <math>\phi(a) = \phi(b) = 0.</math></ref> Continuing the calculation above, for all <math>\phi \in \mathcal{D}(U):</math> <math display=block>\begin{align} \left\langle {}^{t}P(D_f), \phi \right\rangle &=\sum\nolimits_\alpha (-1)^{|\alpha|} \int_U \phi(x) (\partial^\alpha(c_\alpha f))(x) \,dx && \text{As shown above} \\[4pt] &= \int_U \phi(x) \sum\nolimits_\alpha (-1)^{|\alpha|} (\partial^\alpha(c_\alpha f))(x)\,dx \\[4pt] &= \int_U \phi(x) \sum_\alpha \left[\sum_{\gamma \le \alpha} \binom{\alpha}{\gamma} (\partial^{\gamma}c_\alpha)(x) (\partial^{\alpha-\gamma}f)(x) \right] \,dx && \text{Leibniz rule}\\ &= \int_U \phi(x) \left[\sum_\alpha \sum_{\gamma \le \alpha} (-1)^{|\alpha|} \binom{\alpha}{\gamma} (\partial^{\gamma}c_\alpha)(x) (\partial^{\alpha-\gamma}f)(x)\right] \,dx \\ &= \int_U \phi(x) \left[ \sum_\alpha \left[ \sum_{\beta \geq \alpha} (-1)^{|\beta|} \binom{\beta}{\alpha} \left(\partial^{\beta-\alpha}c_{\beta}\right)(x) \right] (\partial^\alpha f)(x)\right] \,dx && \text{Grouping terms by derivatives of } f \\ &= \int_U \phi(x) \left[\sum\nolimits_\alpha b_\alpha(x) (\partial^\alpha f)(x) \right] \, dx && b_\alpha:=\sum_{\beta \geq \alpha} (-1)^{|\beta|} \binom{\beta}{\alpha} \partial^{\beta-\alpha}c_{\beta} \\ &= \left\langle \left(\sum\nolimits_\alpha b_\alpha \partial^\alpha \right) (f), \phi \right\rangle \end{align}</math> {{collapse bottom}} The Lemma combined with the fact that the formal transpose of the formal transpose is the original differential operator, that is, <math>P_{**}= P,</math>{{sfn|Trèves|2006|pp=247-252}} enables us to arrive at the correct definition: the formal transpose induces the (continuous) canonical linear operator <math>P_* : C_c^\infty(U) \to C_c^\infty(U)</math> defined by <math>\phi \mapsto P_*(\phi).</math> We claim that the transpose of this map, <math>{}^{t}P_* : \mathcal{D}'(U) \to \mathcal{D}'(U),</math> can be taken as <math>D_P.</math> To see this, for every <math>\phi \in \mathcal{D}(U),</math> compute its action on a distribution of the form <math>D_f</math> with <math>f \in C^\infty(U)</math>: <math display=block>\begin{align} \left\langle {}^{t}P_*\left(D_f\right),\phi \right\rangle &= \left\langle D_{P_{**}(f)}, \phi \right\rangle && \text{Using Lemma above with } P_* \text{ in place of } P\\ &= \left\langle D_{P(f)}, \phi \right\rangle && P_{**} = P \end{align}</math> We call the continuous linear operator <math>D_P := {}^{t}P_* : \mathcal{D}'(U) \to \mathcal{D}'(U)</math> the '''{{em|differential operator on distributions extending <math>P</math>}}'''.{{sfn|Trèves|2006|pp=247-252}} Its action on an arbitrary distribution <math>S</math> is defined via: <math display=block>D_P(S)(\phi) = S\left(P_*(\phi)\right) \quad \text{ for all } \phi \in \mathcal{D}(U).</math> If <math>(T_i)_{i=1}^\infty</math> converges to <math>T \in \mathcal{D}'(U)</math> then for every multi-index <math>\alpha, (\partial^\alpha T_i)_{i=1}^\infty</math> converges to <math>\partial^\alpha T \in \mathcal{D}'(U).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)