Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler angles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Others=== [[File:Automation of foundry with robot.jpg|thumb|right|Industrial robot operating in a foundry]] Euler angles, normally in the Tait–Bryan convention, are also used in [[Industrial robot|robotics]] for speaking about the degrees of freedom of a [[Robotic arm|wrist]]. They are also used in [[electronic stability control]] in a similar way. Gun fire control systems require corrections to gun-order angles (bearing and elevation) to compensate for deck tilt (pitch and roll). In traditional systems, a stabilizing gyroscope with a vertical spin axis corrects for deck tilt, and stabilizes the optical sights and radar antenna. However, gun barrels point in a direction different from the line of sight to the target, to anticipate target movement and fall of the projectile due to gravity, among other factors. Gun mounts roll and pitch with the deck plane, but also require stabilization. Gun orders include angles computed from the vertical gyro data, and those computations involve Euler angles. Euler angles are also used extensively in the quantum mechanics of angular momentum. In quantum mechanics, explicit descriptions of the representations of SO(3) are very important for calculations, and almost all the work has been done using Euler angles. In the early history of quantum mechanics, when physicists and chemists had a sharply negative reaction towards abstract group theoretic methods (called the ''Gruppenpest''), reliance on Euler angles was also essential for basic theoretical work. Many mobile computing devices contain [[accelerometer]]s which can determine these devices' Euler angles with respect to the earth's gravitational attraction. These are used in applications such as games, [[bubble level]] simulations, and [[kaleidoscope]]s.{{citation needed|reason=accelerometers can measure orientation, yes; is there any evidence they use Euler angles for this?|date=May 2011}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)