Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler equations (fluid dynamics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Finite volume form=== {{see also|Finite volume method}} On the other hand, by integrating a generic conservation equation: <math display="block"> \frac {\partial \mathbf y}{\partial t} + \nabla \cdot \mathbf F = \mathbf s,</math> on a fixed volume ''V<sub>m</sub>'', and then basing on the [[divergence theorem]], it becomes: <math display="block"> \frac {d}{dt} \int_{V_m} \mathbf y dV + \oint_{\partial V_m} \mathbf F \cdot \hat n ds = \mathbf S .</math> By integrating this equation also over a time interval: <math display="block"> \int_{V_m} \mathbf y(\mathbf r, t_{n+1}) \, dV - \int_{V_m} \mathbf y(\mathbf r, t_n) \, dV+ \int_{t_n}^{t_{n+1}} \oint_{\partial V_m} \mathbf F \cdot \hat n \, ds \, dt = \mathbf 0 .</math> Now by defining the node conserved quantity: <math display="block">\mathbf y_{m,n} \equiv \frac 1 {V_m} \int_{V_m} \mathbf y(\mathbf r, t_n) \, dV ,</math> we deduce the finite volume form: <math display="block">\mathbf{y}_{m,n+1}=\mathbf{y}_{m,n} - \frac{1}{V_m} \int_{t_n}^{t_{n+1}} \oint_{\partial V_m} \mathbf{F} \cdot \hat{n}\, ds \, dt .</math> In particular, for Euler equations, once the conserved quantities have been determined, the convective variables are deduced by back substitution: <math display="block">\begin{align} \displaystyle \mathbf u_{m,n} &= \frac{\mathbf j_{m,n}}{\rho_{m,n}}, \\[1.2ex] \displaystyle e_{m,n} &= \frac{E^t_{m,n}}{\rho_{m,n}} - \frac{1}{2} u^2_{m,n}. \end{align}</math> Then the explicit finite volume expressions of the original convective variables are:{{sfn|Quartapelle|Auteri|2013|p=161|loc=par. 11.10: Forma differenziale: metodo dei volumi finiti}} {{Equation box 1 |indent=: |title='''Euler equations'''<br/>(''Finite volume form'') |equation=<math>\begin{align} \rho_{m,n+1} &= \rho_{m,n} - \frac{1}{V_m}\int_{t_n}^{t_{n+1}}\oint_{\partial V_m}\rho\mathbf{u} \cdot \hat{n}\, ds\, dt \\[1.2ex] \mathbf u_{m,n+1} &= \mathbf u_{m,n} - \frac{1}{\rho_{m,n} V_m}\int_{t_n}^{t_{n+1}}\oint_{\partial V_m} (\rho\mathbf{u} \otimes \mathbf{u} - p\mathbf{I}) \cdot \hat{n}\, ds\, dt \\[1.2ex] \mathbf e_{m,n+1} &= \mathbf e_{m,n} - \frac{1}{2}\left(u^2_{m,n+1} - u^2_{m,n}\right) - \frac{1}{\rho_{m,n} V_m}\int_{t_n}^{t_{n+1}}\oint_{\partial V_m} \left(\rho e + \frac{1}{2}\rho u^2 + p\right)\mathbf{u} \cdot \hat{n}\, ds\, dt \\[1.2ex] \end{align}</math> |cellpadding |border |border colour = #FF0000 |background colour = #ECFCF4 }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)