Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Definition=== One can define the '''Hermite functions''' (often called Hermite-Gaussian functions) from the physicist's polynomials: <math display="block">\psi_n(x) = \left (2^n n! \sqrt{\pi} \right )^{-\frac12} e^{-\frac{x^2}{2}} H_n(x) = (-1)^n \left (2^n n! \sqrt{\pi} \right)^{-\frac12} e^{\frac{x^2}{2}}\frac{d^n}{dx^n} e^{-x^2}.</math> Thus, <math display="block">\sqrt{2(n+1)}~~\psi_{n+1}(x)= \left ( x- {d\over dx}\right ) \psi_n(x).</math> Since these functions contain the square root of the [[weight function]] and have been scaled appropriately, they are [[Orthonormality|orthonormal]]: <math display="block">\int_{-\infty}^\infty \psi_n(x) \psi_m(x) \,dx = \delta_{nm},</math> and they form an orthonormal basis of {{math|''L''<sup>2</sup>('''R''')}}. This fact is equivalent to the corresponding statement for Hermite polynomials (see above). The Hermite functions are closely related to the [[Whittaker function]] {{Harv|Whittaker|Watson|1996}} {{math|''D''<sub>''n''</sub>(''z'')}}: <math display="block">D_n(z) = \left(n! \sqrt{\pi}\right)^{\frac12} \psi_n\left(\frac{z}{\sqrt 2}\right) = (-1)^n e^\frac{z^2}{4} \frac{d^n}{dz^n} e^\frac{-z^2}{2}</math> and thereby to other [[parabolic cylinder function]]s. The Hermite functions satisfy the differential equation <math display="block">\psi_n''(x) + \left(2n + 1 - x^2\right) \psi_n(x) = 0.</math> This equation is equivalent to the [[Schrödinger equation]] for a harmonic oscillator in quantum mechanics, so these functions are the [[eigenfunctions]]. [[Image:Herm5.svg|thumb|center|450px|Hermite functions: 0 (blue, solid), 1 (orange, dashed), 2 (green, dot-dashed), 3 (red, dotted), 4 (purple, solid), and 5 (brown, dashed)]] <math display="block">\begin{align} \psi_0(x) &= \pi^{-\frac14} \, e^{-\frac12 x^2}, \\ \psi_1(x) &= \sqrt{2} \, \pi^{-\frac14} \, x \, e^{-\frac12 x^2}, \\ \psi_2(x) &= \left(\sqrt{2} \, \pi^{\frac14}\right)^{-1} \, \left(2x^2-1\right) \, e^{-\frac12 x^2}, \\ \psi_3(x) &= \left(\sqrt{3} \, \pi^{\frac14}\right)^{-1} \, \left(2x^3-3x\right) \, e^{-\frac12 x^2}, \\ \psi_4(x) &= \left(2 \sqrt{6} \, \pi^{\frac14}\right)^{-1} \, \left(4x^4-12x^2+3\right) \, e^{-\frac12 x^2}, \\ \psi_5(x) &= \left(2 \sqrt{15} \, \pi^{\frac14}\right)^{-1} \, \left(4x^5-20x^3+15x\right) \, e^{-\frac12 x^2}. \end{align}</math> [[Image:Herm50.svg|thumb|center|680px|Hermite functions: 0 (blue, solid), 2 (orange, dashed), 4 (green, dot-dashed), and 50 (red, solid)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)