Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Learning classifier system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Terminology == The name, "Learning Classifier System (LCS)", is a bit misleading since there are many [[machine learning]] algorithms that 'learn to classify' (e.g. [[decision tree]]s, [[artificial neural network]]s), but are not LCSs. The term 'rule-based machine learning ([[Rule-based machine learning|RBML]])' is useful, as it more clearly captures the essential 'rule-based' component of these systems, but it also generalizes to methods that are not considered to be LCSs (e.g. [[association rule learning]], or [[artificial immune system]]s). More general terms such as, 'genetics-based machine learning', and even 'genetic algorithm'<ref name=":8">Congdon, Clare Bates. "A comparison of genetic algorithms and other machine learning systems on a complex classification task from common disease research." PhD diss., The University of Michigan, 1995.</ref> have also been applied to refer to what would be more characteristically defined as a learning classifier system. Due to their similarity to [[genetic algorithm]]s, Pittsburgh-style learning classifier systems are sometimes generically referred to as 'genetic algorithms'. Beyond this, some LCS algorithms, or closely related methods, have been referred to as 'cognitive systems',<ref name=":2" /> 'adaptive agents', '[[production system (computer science)|production system]]s', or generically as a 'classifier system'.<ref>{{Cite journal|last1=Booker|first1=L. B.|last2=Goldberg|first2=D. E.|last3=Holland|first3=J. H.|date=1989-09-01|title=Classifier systems and genetic algorithms|journal=Artificial Intelligence|volume=40|issue=1|pages=235–282|doi=10.1016/0004-3702(89)90050-7|hdl=2027.42/27777|url=https://deepblue.lib.umich.edu/bitstream/2027.42/27777/1/0000171.pdf|hdl-access=free}}</ref><ref>Wilson, Stewart W., and David E. Goldberg. "A critical review of classifier systems." In ''Proceedings of the third international conference on Genetic algorithms'', pp. 244-255. Morgan Kaufmann Publishers Inc., 1989.</ref> This variation in terminology contributes to some confusion in the field. Up until the 2000s nearly all learning classifier system methods were developed with reinforcement learning problems in mind. As a result, the term ‘learning classifier system’ was commonly defined as the combination of ‘trial-and-error’ reinforcement learning with the global search of a genetic algorithm. Interest in supervised learning applications, and even unsupervised learning have since broadened the use and definition of this term.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)