Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
MOSFET
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Higher subthreshold conduction=== As MOSFET geometries shrink, the voltage that can be applied to the gate must be reduced to maintain reliability. To maintain performance, the threshold voltage of the MOSFET has to be reduced as well. As threshold voltage is reduced, the transistor cannot be switched from complete turn-off to complete turn-on with the limited voltage swing available; the circuit design is a compromise between strong current in the ''on'' case and low current in the ''off'' case, and the application determines whether to favor one over the other. Subthreshold leakage (including subthreshold conduction, gate-oxide leakage and reverse-biased junction leakage), which was ignored in the past, now can consume upwards of half of the total power consumption of modern high-performance VLSI chips.<ref name=Roy>{{ cite book | first1 =Kaushik|last1=Roy |first2=Kiat Seng|last2=Yeo | title=Low Voltage, Low Power VLSI Subsystems | year = 2004 | page = Fig. 2.1, p. 44, Fig. 1.1, p. 4 | publisher = McGraw-Hill Professional | isbn = 978-0-07-143786-8 | url = https://books.google.com/books?id=jXm4pNxCSCYC&pg=PA4 | no-pp = true }}</ref><ref name=Goodnick>{{ cite book | first1 =Dragica|last1=Vasileska |author1-link=Dragica Vasileska|first2=Stephen|last2=Goodnick | title=Computational Electronics | year = 2006 | page = 103 | publisher = Morgan & Claypool | isbn = 978-1-59829-056-1 | url = https://books.google.com/books?id=DBPnzqy5Fd8C&pg=PA103 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)