Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Perron–Frobenius theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Cyclicity==== Suppose in addition that ρ(''A'') = 1 and ''A'' has ''h'' eigenvalues on the unit circle. If ''P'' is the peripheral projection then the matrix ''R'' = ''AP'' = ''PA'' is non-negative and irreducible, ''R<sup>h</sup>'' = ''P'', and the cyclic group ''P'', ''R'', ''R''<sup>2</sup>, ...., ''R''<sup>''h''−1</sup> represents the harmonics of ''A''. The spectral projection of ''A'' at the eigenvalue λ on the unit circle is given by the formula <math>\scriptstyle h^{-1}\sum^h_1\lambda^{-k}R^k</math>. All of these projections (including the Perron projection) have the same positive diagonal, moreover choosing any one of them and then taking the modulus of every entry invariably yields the Perron projection. Some donkey work is still needed in order to establish the cyclic properties (6)–(8) but it's essentially just a matter of turning the handle. The spectral decomposition of ''A'' is given by ''A'' = ''R'' ⊕ (1 − ''P'')''A'' so the difference between ''A<sup>n</sup>'' and ''R<sup>n</sup>'' is ''A<sup>n</sup>'' − ''R<sup>n</sup>'' = (1 − ''P'')''A''<sup>''n''</sup> representing the transients of ''A<sup>n</sup>'' which eventually decay to zero. ''P'' may be computed as the limit of ''A<sup>nh</sup>'' as ''n'' → ∞.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)