Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Worked-out examples == === First-quadrant sheet === Consider a spectral sequence where <math>E_r^{p,q}</math> vanishes for all <math> p </math> less than some <math> p_0 </math> and for all <math> q </math> less than some <math> q_0 </math>. If <math> p_0 </math> and <math> q_0 </math> can be chosen to be zero, this is called a '''first-quadrant spectral sequence'''. The sequence abuts because <math> E_{r+i}^{p,q} = E_r^{p,q} </math> holds for all <math> i\geq 0 </math> if <math> r>p </math> and <math> r>q+1 </math>. To see this, note that either the domain or the codomain of the differential is zero for the considered cases. In visual terms, the sheets stabilize in a growing rectangle (see picture above). The spectral sequence need not degenerate, however, because the differential maps might not all be zero at once. Similarly, the spectral sequence also converges if <math>E_r^{p,q}</math> vanishes for all <math> p </math> greater than some <math> p_0 </math> and for all <math> q </math> greater than some <math> q_0 </math>. === 2 non-zero adjacent columns === Let <math>E^r_{p, q}</math> be a homological spectral sequence such that <math>E^2_{p, q} = 0</math> for all ''p'' other than 0, 1. Visually, this is the spectral sequence with <math>E^2</math>-page :<math>\begin{matrix} & \vdots & \vdots & \vdots & \vdots & \\ \cdots & 0 & E^2_{0,2} & E^2_{1,2} & 0 & \cdots \\ \cdots & 0 & E^2_{0,1} & E^2_{1,1} & 0 & \cdots \\ \cdots & 0 & E^2_{0,0} & E^2_{1,0} & 0 & \cdots \\ \cdots & 0 & E^2_{0,-1} & E^2_{1,-1} & 0 & \cdots \\ & \vdots & \vdots & \vdots & \vdots & \end{matrix}</math> The differentials on the second page have degree (-2, 1), so they are of the form :<math>d^2_{p,q}:E^2_{p,q} \to E^2_{p-2,q+1}</math> These maps are all zero since they are :<math>d^2_{0,q}:E^2_{0,q} \to 0</math>, <math>d^2_{1,q}:E^2_{1,q} \to 0</math> hence the spectral sequence degenerates: <math>E^{\infty} = E^2</math>. Say, it converges to <math>H_*</math> with a filtration :<math>0 = F_{-1} H_n \subset F_0 H_n \subset \dots \subset F_n H_n = H_n</math> such that <math>E^{\infty}_{p, q} = F_p H_{p+q}/F_{p-1} H_{p+q}</math>. Then <math>F_0 H_n = E^2_{0, n}</math>, <math>F_1 H_n / F_0 H_n = E^2_{1, n -1}</math>, <math>F_2 H_n / F_1 H_n = 0</math>, <math>F_3 H_n / F_2 H_n = 0</math>, etc. Thus, there is the exact sequence:<ref>{{harvnb|Weibel|1994|loc=Exercise 5.2.1.}}; there are typos in the exact sequence, at least in the 1994 edition.</ref> :<math>0 \to E^2_{0, n} \to H_n \to E^2_{1, n - 1} \to 0</math>. Next, let <math>E^r_{p, q}</math> be a spectral sequence whose second page consists only of two lines ''q'' = 0, 1. This need not degenerate at the second page but it still degenerates at the third page as the differentials there have degree (-3, 2). Note <math>E^3_{p, 0} = \operatorname{ker} (d: E^2_{p, 0} \to E^2_{p - 2, 1})</math>, as the denominator is zero. Similarly, <math>E^3_{p, 1} = \operatorname{coker}(d: E^2_{p+2, 0} \to E^2_{p, 1})</math>. Thus, :<math>0 \to E^{\infty}_{p, 0} \to E^2_{p, 0} \overset{d}\to E^2_{p-2, 1} \to E^{\infty}_{p-2, 1} \to 0</math>. Now, say, the spectral sequence converges to ''H'' with a filtration ''F'' as in the previous example. Since <math>F_{p-2} H_{p} / F_{p-3} H_{p} = E^{\infty}_{p-2, 2} = 0</math>, <math>F_{p-3} H_p / F_{p-4} H_p = 0</math>, etc., we have: <math>0 \to E^{\infty}_{p - 1, 1} \to H_p \to E^{\infty}_{p, 0} \to 0</math>. Putting everything together, one gets:<ref>{{harvnb|Weibel|1994|loc=Exercise 5.2.2.}}</ref> :<math>\cdots \to H_{p+1} \to E^2_{p + 1, 0} \overset{d}\to E^2_{p - 1, 1} \to H_p \to E^2_{p, 0} \overset{d}\to E^2_{p - 2, 1} \to H_{p-1} \to \dots.</math> === Wang sequence === The computation in the previous section generalizes in a straightforward way. Consider a [[fibration]] over a sphere: :<math>F \overset{i}\to E \overset{p}\to S^n</math> with ''n'' at least 2. There is the [[Serre spectral sequence]]: :<math>E^2_{p, q} = H_p(S^n; H_q(F)) \Rightarrow H_{p+q}(E)</math>; that is to say, <math>E^{\infty}_{p, q} = F_p H_{p+q}(E)/F_{p-1} H_{p+q}(E)</math> with some filtration <math>F_\bullet</math>. Since <math>H_p(S^n)</math> is nonzero only when ''p'' is zero or ''n'' and equal to '''Z''' in that case, we see <math>E^2_{p, q}</math> consists of only two lines <math>p = 0,n</math>, hence the <math>E^2</math>-page is given by :<math>\begin{matrix} & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\ \cdots & 0 & E^2_{0,2} & 0 & \cdots & 0 & E^2_{n,2} & 0 & \cdots \\ \cdots & 0 & E^2_{0,1} & 0 & \cdots & 0 & E^2_{n,1} & 0 & \cdots \\ \cdots & 0 & E^2_{0,0} & 0 & \cdots & 0 & E^2_{n,0} & 0 & \cdots \\ \end{matrix}</math> Moreover, since :<math>E^2_{p, q} = H_p(S^n;H_q(F)) = H_q(F)</math> for <math>p = 0,n</math> by the [[universal coefficient theorem]], the <math>E^2</math> page looks like :<math>\begin{matrix} & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\ \cdots & 0 & H_2(F) & 0 & \cdots & 0 & H_2(F) & 0 & \cdots \\ \cdots & 0 & H_1(F) & 0 & \cdots & 0 & H_1(F) & 0 & \cdots \\ \cdots & 0 & H_0(F) & 0 & \cdots & 0 & H_0(F) & 0 & \cdots \\ \end{matrix}</math> Since the only non-zero differentials are on the <math>E^n</math>-page, given by :<math>d^n_{n,q}:E^n_{n,q} \to E^n_{0,q+n-1}</math> which is :<math>d^n_{n,q}:H_q(F) \to H_{q+n-1}(F)</math> the spectral sequence converges on <math>E^{n+1} = E^{\infty}</math>. By computing <math>E^{n+1}</math> we get an exact sequence :<math>0 \to E^{\infty}_{n, q-n} \to E^n_{n, q-n} \overset{d}\to E^n_{0, q-1} \to E^{\infty}_{0, q-1} \to 0.</math> and written out using the homology groups, this is :<math>0 \to E^{\infty}_{n, q-n} \to H_{q-n}(F) \overset{d}\to H_{q-1}(F) \to E^{\infty}_{0, q-1} \to 0.</math> To establish what the two <math>E^\infty</math>-terms are, write <math>H = H(E)</math>, and since <math>F_1 H_q/F_0 H_q = E^{\infty}_{1, q - 1} = 0</math>, etc., we have: <math>E^{\infty}_{n, q-n} = F_n H_q / F_0 H_q</math> and thus, since <math>F_n H_q = H_q</math>, :<math>0 \to E^{\infty}_{0, q} \to H_q \to E^{\infty}_{n, q - n} \to 0.</math> This is the exact sequence :<math>0 \to H_q(F) \to H_q(E) \to H_{q-n}(F)\to 0.</math> Putting all calculations together, one gets:<ref>{{harvnb|Weibel|1994|loc=Application 5.3.5.}}</ref> :<math>\dots \to H_q(F) \overset{i_*}\to H_q(E) \to H_{q-n}(F) \overset{d}\to H_{q-1}(F) \overset{i_*}\to H_{q-1}(E) \to H_{q-n -1}(F) \to \dots</math> (The [[Gysin sequence]] is obtained in a similar way.) === Low-degree terms === With an obvious notational change, the type of the computations in the previous examples can also be carried out for cohomological spectral sequence. Let <math>E_r^{p, q}</math> be a first-quadrant spectral sequence converging to ''H'' with the decreasing filtration :<math>0 = F^{n+1} H^n \subset F^n H^n \subset \dots \subset F^0 H^n = H^n</math> so that <math>E_{\infty}^{p,q} = F^p H^{p+q}/F^{p+1} H^{p+q}.</math> Since <math>E_2^{p, q}</math> is zero if ''p'' or ''q'' is negative, we have: :<math>0 \to E^{0, 1}_{\infty} \to E^{0, 1}_2 \overset{d}\to E^{2, 0}_2 \to E^{2, 0}_{\infty} \to 0.</math> Since <math>E_{\infty}^{1, 0} = E_2^{1, 0}</math> for the same reason and since <math>F^2 H^1 = 0,</math> :<math>0 \to E_2^{1, 0} \to H^1 \to E^{0, 1}_{\infty} \to 0</math>. Since <math>F^3 H^2 = 0</math>, <math>E^{2, 0}_{\infty} \subset H^2</math>. Stacking the sequences together, we get the so-called [[five-term exact sequence]]: :<math>0 \to E^{1, 0}_2 \to H^1 \to E^{0, 1}_2 \overset{d}\to E^{2, 0}_2 \to H^2.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)