Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivatives of theta functions == These are two identical definitions of the complete elliptic integral of the second kind: :<math>E(k) = \int_{0}^{\pi/2} \sqrt{1 - k^2\sin(\varphi)^2} d\varphi</math> :<math>E(k) = \frac{\pi}{2}\sum_{a = 0}^{\infty} \frac{[(2a)!]^2}{(1 - 2a)16^{a}(a!)^4} k^{2a}</math> The derivatives of the Theta Nullwert functions have these MacLaurin series: :<math>\theta_{2}'(x) = \frac{\mathrm{d}}{\mathrm{d}x}\,\theta_{2}(x) = \frac{1}{2} x^{-3/4}+\sum_{n = 1}^{\infty} \frac{1}{2}(2n + 1)^2 x^{(2n-1)(2n+3)/4}</math> :<math>\theta_{3}'(x) = \frac{\mathrm{d}}{\mathrm{d}x}\,\theta_{3}(x) = 2+\sum_{n = 1}^{\infty} 2(n + 1)^2 x^{n(n+2)}</math> :<math>\theta_{4}'(x) = \frac{\mathrm{d}}{\mathrm{d}x}\,\theta_{4}(x) = -2+\sum_{n = 1}^{\infty} 2(n + 1)^2 (-1)^{n+1} x^{n(n+2)}</math> The derivatives of theta zero-value functions<ref>{{MathWorld|EllipticAlphaFunction|Elliptic Alpha Function}}</ref> are as follows: :<math>\theta_{2}'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \,\theta_{2}(x) = \frac{1}{2\pi x} \theta_{2}(x)\theta_{3}(x)^2 E\biggl[\frac{\theta_{2}(x)^2}{\theta_{3}(x)^2}\biggr]</math> :<math>\theta_{3}'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \,\theta_{3}(x) = \theta_{3}(x)\bigl[\theta_{3}(x)^2 + \theta_{4}(x)^2\bigr]\biggl\{\frac{1}{2\pi x}E\biggl[\frac{\theta_{3}(x)^2 - \theta_{4}(x)^2}{\theta_{3}(x)^2 + \theta_{4}(x)^2}\biggr] - \frac{\theta_{4}(x)^2}{4\,x}\biggr\}</math> :<math>\theta_{4}'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \,\theta_{4}(x) = \theta_{4}(x)\bigl[\theta_{3}(x)^2 + \theta_{4}(x)^2\bigr]\biggl\{\frac{1}{2\pi x}E\biggl[\frac{\theta_{3}(x)^2 - \theta _{4}(x)^2}{\theta_{3}(x)^2+\theta_{4}(x)^2}\biggr] - \frac{\theta _{3}(x)^ 2}{4\,x}\biggr\}</math> The two last mentioned formulas are valid for all real numbers of the real definition interval: <math> -1 < x < 1 \,\cap \,x \in \R </math> And these two last named theta derivative functions are related to each other in this way: :<math>\vartheta _{4}(x)\biggl[\frac{\mathrm{d}}{\mathrm{d}x} \,\vartheta _{3}(x)\biggr] - \vartheta _{3}(x)\biggl[\frac{\mathrm{d}}{\mathrm{d}x} \,\theta _{4}(x)\biggr] = \frac{1}{4\,x}\,\theta_{3}(x)\,\theta_{4}(x)\bigl[\theta_{3}(x)^4 - \theta_{4}(x)^4\bigr] </math> The derivatives of the quotients from two of the three theta functions mentioned here always have a rational relationship to those three functions: :<math>\frac{\mathrm{d}}{\mathrm{d}x} \,\frac{\theta _{2}(x)}{\theta _{3}(x)} = \frac{\theta_{2}(x)\,\theta _{4}(x)^4}{4\,x\,\theta _{3}(x)}</math> :<math>\frac{\mathrm{d}}{\mathrm{d}x} \,\frac{\theta _{2}(x)}{\theta _{4}(x)} = \frac{\theta_{2}(x)\,\theta _{3}(x)^4}{4\,x\,\theta _{4}(x)}</math> :<math>\frac{\mathrm{d}}{\mathrm{d}x} \,\frac{\theta _{3}(x)}{\theta _{4}(x)} = \frac{\theta_{3}(x)^5 - \theta _{3}(x)\,\theta _{4}(x)^4}{4\,x\,\theta _{4}(x)}</math> For the derivation of these derivation formulas see the articles [[Nome (mathematics)]] and [[Modular lambda function]]!
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)