Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==An algorithmic view: the Seidel triangle== The sequence ''S''<sub>''n''</sub> has another unexpected yet important property: The denominators of ''S''<sub>''n''+1</sub> divide the factorial {{math|''n''!}}. In other words: the numbers {{math|1=''T''<sub>''n''</sub> = ''S''<sub>''n'' + 1</sub> ''n''!}}, sometimes called [[Alternating permutations|Euler zigzag numbers]], are integers. : <math> T_n = 1,\,1,\,1,\,2,\,5,\,16,\,61,\,272,\,1385,\,7936,\,50521,\,353792,\ldots \quad n=0, 1, 2, 3, \ldots </math> ({{OEIS2C|id=A000111}}). See ({{OEIS2C|id=A253671}}). Their [[exponential generating function]] is the sum of the [[trigonometric functions#Reciprocal functions|secant]] and [[tangent (trigonometry)|tangent]] functions. : <math> \sum_{n=0}^\infty T_n \frac{x^n}{n!} = \tan \left(\frac\pi4 + \frac x2\right) = \sec x + \tan x</math>. Thus the above representations of the Bernoulli and Euler numbers can be rewritten in terms of this sequence as :<math>\begin{align} B_n &= (-1)^{\left\lfloor \frac{n}{2}\right\rfloor} [n\text{ even}] \frac{n }{2^n-4^n}\, T_{n-1}\ & n &\geq 2 \\ E_n &= (-1)^{\left\lfloor \frac{n}{2}\right\rfloor} [n\text{ even}] T_{n} & n &\geq 0 \end{align}</math> These identities make it easy to compute the Bernoulli and Euler numbers: the Euler numbers {{math|''E''<sub>2''n''</sub>}} are given immediately by {{math|''T''<sub>2''n''</sub>}} and the Bernoulli numbers {{math|''B''<sub>2''n''</sub>}} are fractions obtained from {{math|''T''<sub>2''n'' - 1</sub>}} by some easy shifting, avoiding rational arithmetic. What remains is to find a convenient way to compute the numbers {{math|''T''<sub>''n''</sub>}}. However, already in 1877 [[Philipp Ludwig von Seidel]] published an ingenious algorithm, which makes it simple to calculate {{math|''T''<sub>''n''</sub>}}.{{r|Seidel1877}} {{image frame|align=none|caption=Seidel's algorithm for {{math|''T''<sub>''n''</sub>}} |content=<math> \begin{array}{crrrcc} { } & { } & {\color{red}1} & { } & { } & { } \\ { } & {\rightarrow} & {\color{blue}1} & {\color{red}1} & { } \\ { } & {\color{red}2} & {\color{blue}2} & {\color{blue}1} & {\leftarrow} \\ {\rightarrow} & {\color{blue}2} & {\color{blue}4} & {\color{blue}5} & {\color{red}5} \\ {\color{red}16} & {\color{blue}16} & {\color{blue}14} & {\color{blue}10} & {\color{blue}5} & {\leftarrow} \end{array} </math>}} #Start by putting 1 in row 0 and let {{math|''k''}} denote the number of the row currently being filled #If {{math|''k''}} is odd, then put the number on the left end of the row {{math|''k'' β 1}} in the first position of the row {{math|''k''}}, and fill the row from the left to the right, with every entry being the sum of the number to the left and the number to the upper #At the end of the row duplicate the last number. #If {{math|''k''}} is even, proceed similar in the other direction. Seidel's algorithm is in fact much more general (see the exposition of Dominique Dumont {{r|Dumont1981}}) and was rediscovered several times thereafter. Similar to Seidel's approach D. E. Knuth and T. J. Buckholtz gave a recurrence equation for the numbers {{math|''T''<sub>2''n''</sub>}} and recommended this method for computing {{math|''B''<sub>2''n''</sub>}} and {{math|''E''<sub>2''n''</sub>}} 'on electronic computers using only simple operations on integers'.{{r|KnuthBuckholtz1967}} V. I. Arnold{{r|Arnold1991}} rediscovered Seidel's algorithm and later Millar, Sloane and Young popularized Seidel's algorithm under the name [[boustrophedon transform]]. Triangular form: :{| style="text-align:right" | || || || || || || 1|| || || || || || |- | || || || || || 1|| || 1|| || || || || |- | || || || || 2|| || 2|| || 1|| || || || |- | || || || 2|| || 4|| || 5|| || 5|| || || |- | || || 16|| || 16|| || 14|| || 10|| || 5|| || |- | || 16|| || 32|| || 46|| || 56|| || 61|| || 61|| |- |272|| ||272|| ||256|| ||224|| ||178|| ||122|| || 61 |} Only {{OEIS2C|id=A000657}}, with one 1, and {{OEIS2C|id=A214267}}, with two 1s, are in the OEIS. Distribution with a supplementary 1 and one 0 in the following rows: :{| style="text-align:right" | || || || || || || 1|| || || || || || |- | || || || || || 0|| || 1|| || || || || |- | || || || || β1|| || β1|| || 0|| || || || |- | || || || 0|| || β1|| || β2|| || β2|| || || |- | || || 5|| || 5|| || 4|| || 2|| || 0|| || |- | || 0|| || 5|| || 10|| || 14|| || 16|| || 16|| |- |β61|| ||β61|| ||β56|| ||β46|| ||β32|| ||β16|| || 0 |} This is {{OEIS2C|id=A239005}}, a signed version of {{OEIS2C|id=A008280}}. The main andiagonal is {{OEIS2C|id=A122045}}. The main diagonal is {{OEIS2C|id=A155585}}. The central column is {{OEIS2C|id=A099023}}. Row sums: 1, 1, β2, β5, 16, 61.... See {{OEIS2C|id=A163747}}. See the array beginning with 1, 1, 0, β2, 0, 16, 0 below. The AkiyamaβTanigawa algorithm applied to {{OEIS2C|id=A046978}} ({{math|''n'' + 1}}) / {{OEIS2C|id=A016116}}({{math|''n''}}) yields: :{| style="text-align:right" | 1|| 1|| {{sfrac|1|2}}|| 0|| β{{sfrac|1|4}}|| β{{sfrac|1|4}}|| β{{sfrac|1|8}} |- | 0|| 1|| {{sfrac|3|2}}|| 1|| 0|| β{{sfrac|3|4}} |- | β1|| β1|| {{sfrac|3|2}}|| 4|| {{sfrac|15|4}} |- | 0|| β5|| β{{sfrac|15|2}}|| 1 |- | 5|| 5|| β{{sfrac|51|2}} |- | 0|| 61 |- | β61 |} '''1.''' The first column is {{OEIS2C|id=A122045}}. Its binomial transform leads to: :{| style="text-align:right" |- | 1|| 1|| 0|| β2|| 0|| 16|| 0 |- |0||β1||β2||2||16||β16 |- |β1||β1||4||14||β32 |- |0||5||10||β46 |- |5||5||β56 |- |0||β61 |- |β61 |} The first row of this array is {{OEIS2C|id=A155585}}. The absolute values of the increasing antidiagonals are {{OEIS2C|id=A008280}}. The sum of the antidiagonals is {{nowrap|β{{OEIS2C|id=A163747}} ({{math|''n'' + 1}}).}} '''2.''' The second column is {{nowrap|1 1 β1 β5 5 61 β61 β1385 1385...}}. Its binomial transform yields: :{| style="text-align:right" |- | 1|| 2|| 2|| β4|| β16|| 32|| 272 |- |1||0||β6||β12||48||240 |- |β1||β6||β6||60||192 |- |β5||0||66||32 |- |5||66||66 |- |61||0 |- |β61 |} The first row of this array is {{nowrap|1 2 2 β4 β16 32 272 544 β7936 15872 353792 β707584...}}. The absolute values of the second bisection are the double of the absolute values of the first bisection. Consider the Akiyama-Tanigawa algorithm applied to {{OEIS2C|id=A046978}} ({{math|''n''}}) / ({{OEIS2C|id=A158780}} ({{math|''n'' + 1}}) = abs({{OEIS2C|id=A117575}} ({{mvar|n}})) + 1 = {{nowrap|1, 2, 2, {{sfrac|3|2}}, 1, {{sfrac|3|4}}, {{sfrac|3|4}}, {{sfrac|7|8}}, 1, {{sfrac|17|16}}, {{sfrac|17|16}}, {{sfrac|33|32}}...}}. :{| style="text-align:right" |1||2||2||{{sfrac|3|2}}||1||{{sfrac|3|4}}||{{sfrac|3|4}} |- |β1||0||{{sfrac|3|2}}||2||{{sfrac|5|4}}||0 |- |β1||β3||β{{sfrac|3|2}}||3||{{sfrac|25|4}} |- |2||β3||β{{sfrac|27|2}}||β13 |- |5||21||β{{sfrac|3|2}} |- |β16||45 |- |β61 |} The first column whose the absolute values are {{OEIS2C|id=A000111}} could be the numerator of a trigonometric function. {{OEIS2C|id=A163747}} is an autosequence of the first kind (the main diagonal is {{OEIS2C|id=A000004}}). The corresponding array is: :{| style="text-align:right" |0||β1||β1||2||5||β16||β61 |- |β1||0||3||3||β21||β45 |- |1||3||0||β24||β24 |- |2||β3||β24||0 |- |β5||β21||24 |- |β16||45 |- |β61 |} The first two upper diagonals are {{nowrap|β1 3 β24 402...}} = {{math|(β1)<sup>''n'' + 1</sup>}} Γ {{OEIS2C|id=A002832}}. The sum of the antidiagonals is {{nowrap|0 β2 0 10...}} = 2 Γ {{OEIS2C|id=A122045}}(''n'' + 1). β{{OEIS2C|id=A163982}} is an autosequence of the second kind, like for instance {{OEIS2C|id=A164555}} / {{OEIS2C|id=A027642}}. Hence the array: :{| style="text-align:right" |- |2||1||β1||β2||5||16||β61 |- |β1||β2||β1||7||11||β77 |- |β1||1||8||4||β88 |- |2||7||β4||β92 |- |5||β11||β88 |- |β16||β77 |- |β61 |} The main diagonal, here {{nowrap|2 β2 8 β92...}}, is the double of the first upper one, here {{OEIS2C|id=A099023}}. The sum of the antidiagonals is {{nowrap|2 0 β4 0...}} = 2 Γ {{OEIS2C|id=A155585}}({{math|''n'' + }}1). {{OEIS2C|id=A163747}} β {{OEIS2C|id=A163982}} = 2 Γ {{OEIS2C|id=A122045}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)