Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cardinality
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Cantor's paradox ==== {{Main|Cantor's paradox}} [[Cantor's theorem]] state's that, for any set <math>A,</math> possibly infinite, its [[powerset]] <math>\mathcal{P}(A)</math> has a strictly greater cardinality. For example, this means there is no bijection from <math>\N</math> to <math>\mathcal{P}(\N) \sim \R.</math> [[Cantor's paradox]] is a paradox in [[naive set theory]], which shows that there cannot exist a "set of all sets" or "[[Universe (mathematics)|universe set]]". It starts by assuming there is some set of all sets, <math>U := \{x \; | \; x \,\text{ is a set} \},</math> then it must be that <math>U</math> is strictly smaller than <math>\mathcal{P}(U),</math> thus <math>|U| \leq |\mathcal{P}(U)| .</math> But since <math>U</math> contains all sets, we must have that <math>\mathcal{P}(U) \subseteq U,</math> and thus <math>|\mathcal{P}(U)| \leq |U|.</math> Therefore <math>|\mathcal{P}(U)| = |U|,</math> contradicting Cantor's theorem. This was one of the original paradoxes that added to the need for a formalized set theory to avoid these paradoxes. This paradox is usually resolved in formal set theories by disallowing [[unrestricted comprehension]] and the existence of a universe set.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)