Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Partial sums=== The partial sums of: <math display="block">f(x) = \sum_{n = 0}^\infty a_n T_n(x)</math> are very useful in the [[approximation theory|approximation]] of various functions and in the solution of [[differential equation]]s (see [[spectral method]]). Two common methods for determining the coefficients {{mvar|a<sub>n</sub>}} are through the use of the [[inner product]] as in [[Galerkin's method]] and through the use of [[collocation method|collocation]] which is related to [[interpolation]]. As an interpolant, the {{mvar|N}} coefficients of the {{math|(''N'' − 1)}}st partial sum are usually obtained on the Chebyshev–Gauss–Lobatto<ref>{{Cite web |url=http://www.scottsarra.org/chebyApprox/chebyshevApprox.html |title=Chebyshev Interpolation: An Interactive Tour |access-date=2016-06-02 |archive-url=https://web.archive.org/web/20170318214311/http://www.scottsarra.org/chebyApprox/chebyshevApprox.html |archive-date=2017-03-18 |url-status=dead }}</ref> points (or Lobatto grid), which results in minimum error and avoids [[Runge's phenomenon]] associated with a uniform grid. This collection of points corresponds to the extrema of the highest order polynomial in the sum, plus the endpoints and is given by: <math display="block">x_k = -\cos\left(\frac{k \pi}{N - 1}\right); \qquad k = 0, 1, \dots, N - 1.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)