Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chern class
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Algebraic geometry=== In algebraic geometry there is a similar theory of Chern classes of vector bundles. There are several variations depending on what groups the Chern classes lie in: *For complex varieties the Chern classes can take values in ordinary cohomology, as above. *For varieties over general fields, the Chern classes can take values in cohomology theories such as [[etale cohomology]] or [[l-adic cohomology]]. *For varieties ''V'' over general fields the Chern classes can also take values in homomorphisms of [[Chow group]]s CH(V): for example, the first Chern class of a line bundle over a variety ''V'' is a homomorphism from CH(''V'') to CH(''V'') reducing degrees by 1. This corresponds to the fact that the Chow groups are a sort of analog of homology groups, and elements of cohomology groups can be thought of as homomorphisms of homology groups using the [[cap product]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)