Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete cosine transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example of IDCT== [[File:DCT filter comparison.png|thumb|right|An example showing eight different filters applied to a test image (top left) by multiplying its DCT spectrum (top right) with each filter.]] Consider this 8x8 grayscale image of capital letter A. [[File:letter-a-8x8.png|frame|center|Original size, scaled 10x (nearest neighbor), scaled 10x (bilinear).]] [[File:dct-table.png|frame|center|Basis functions of the discrete cosine transformation with corresponding coefficients (specific for our image). <br/>DCT of the image = <math> \begin{bmatrix} 6.1917 & -0.3411 & 1.2418 & 0.1492 & 0.1583 & 0.2742 & -0.0724 & 0.0561 \\ 0.2205 & 0.0214 & 0.4503 & 0.3947 & -0.7846 & -0.4391 & 0.1001 & -0.2554 \\ 1.0423 & 0.2214 & -1.0017 & -0.2720 & 0.0789 & -0.1952 & 0.2801 & 0.4713 \\ -0.2340 & -0.0392 & -0.2617 & -0.2866 & 0.6351 & 0.3501 & -0.1433 & 0.3550 \\ 0.2750 & 0.0226 & 0.1229 & 0.2183 & -0.2583 & -0.0742 & -0.2042 & -0.5906 \\ 0.0653 & 0.0428 & -0.4721 & -0.2905 & 0.4745 & 0.2875 & -0.0284 & -0.1311 \\ 0.3169 & 0.0541 & -0.1033 & -0.0225 & -0.0056 & 0.1017 & -0.1650 & -0.1500 \\ -0.2970 & -0.0627 & 0.1960 & 0.0644 & -0.1136 & -0.1031 & 0.1887 & 0.1444 \\ \end{bmatrix} </math>.]] Each basis function is multiplied by its coefficient and then this product is added to the final image. [[File:idct-animation.gif|frame|center|On the left is the final image. In the middle is the weighted function (multiplied by a coefficient) which is added to the final image. On the right is the current function and corresponding coefficient. Images are scaled (using bilinear interpolation) by factor 10Γ.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)