Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Prime divisors === With the exceptions of 1, 8 and 144 ({{math|1=''F''<sub>1</sub> = ''F''<sub>2</sub>}}, {{math|''F''<sub>6</sub>}} and {{math|''F''<sub>12</sub>}}) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number ([[Carmichael's theorem]]).<ref>{{Citation | first = Ron | last = Knott | url = http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html | title = The Fibonacci numbers | publisher = Surrey | place = UK}}</ref> As a result, 8 and 144 ({{math|''F''<sub>6</sub>}} and {{math|''F''<sub>12</sub>}}) are the only Fibonacci numbers that are the product of other Fibonacci numbers.<ref>{{Cite OEIS|1=A235383|2=Fibonacci numbers that are the product of other Fibonacci numbers|mode=cs2}}</ref> The divisibility of Fibonacci numbers by a prime {{mvar|p}} is related to the [[Legendre symbol]] <math>\bigl(\tfrac{p}{5}\bigr)</math> which is evaluated as follows: <math display=block>\left(\frac{p}{5}\right) = \begin{cases} 0 & \text{if } p = 5\\ 1 & \text{if } p \equiv \pm 1 \pmod 5\\ -1 & \text{if } p \equiv \pm 2 \pmod 5.\end{cases}</math> If {{mvar|p}} is a prime number then <math display=block> F_p \equiv \left(\frac{p}{5}\right) \pmod p \quad \text{and}\quad F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod p.</math><ref>{{Citation | first = Paulo | last = Ribenboim | author-link = Paulo Ribenboim | year = 1996 | title = The New Book of Prime Number Records | place = New York | publisher = Springer | isbn = 978-0-387-94457-9 | page = 64}}</ref>{{Sfn | Lemmermeyer | 2000 | loc = ex. 2.25–28 | pp = 73–74}} For example, <math display=block>\begin{align} \bigl(\tfrac{2}{5}\bigr) &= -1, &F_3 &= 2, &F_2&=1, \\ \bigl(\tfrac{3}{5}\bigr) &= -1, &F_4 &= 3,&F_3&=2, \\ \bigl(\tfrac{5}{5}\bigr) &= 0, &F_5 &= 5, \\ \bigl(\tfrac{7}{5}\bigr) &= -1, &F_8 &= 21,&F_7&=13, \\ \bigl(\tfrac{11}{5}\bigr)& = +1, &F_{10}& = 55, &F_{11}&=89. \end{align}</math> It is not known whether there exists a prime {{mvar|p}} such that <math display=block>F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod{p^2}.</math> Such primes (if there are any) would be called [[Wall–Sun–Sun prime]]s. Also, if {{math|''p'' ≠ 5}} is an odd prime number then:{{Sfn | Lemmermeyer | 2000 | loc = ex. 2.28 | pp = 73–74}} <math display=block>5 {F_{\frac{p \pm 1}{2}}}^2 \equiv \begin{cases} \tfrac{1}{2} \left (5\bigl(\tfrac{p}{5}\bigr)\pm 5 \right ) \pmod p & \text{if } p \equiv 1 \pmod 4\\ \tfrac{1}{2} \left (5\bigl(\tfrac{p}{5}\bigr)\mp 3 \right ) \pmod p & \text{if } p \equiv 3 \pmod 4. \end{cases}</math> '''Example 1.''' {{math|1=''p'' = 7}}, in this case {{math|1=''p'' ≡ 3 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{7}{5}\bigr) = -1: \qquad \tfrac{1}{2}\left(5 \bigl(\tfrac{7}{5}\bigr)+3 \right ) =-1, \quad \tfrac{1}{2} \left(5\bigl(\tfrac{7}{5}\bigr)-3 \right )=-4.</math> <math display=block>F_3=2 \text{ and } F_4=3.</math> <math display=block>5{F_3}^2=20\equiv -1 \pmod {7}\;\;\text{ and }\;\;5{F_4}^2=45\equiv -4 \pmod {7}</math> '''Example 2.''' {{math|1=''p'' = 11}}, in this case {{math|1=''p'' ≡ 3 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{11}{5}\bigr) = +1: \qquad \tfrac{1}{2}\left( 5\bigl(\tfrac{11}{5}\bigr)+3 \right)=4, \quad \tfrac{1}{2} \left(5\bigl(\tfrac{11}{5}\bigr)- 3 \right)=1.</math> <math display=block>F_5=5 \text{ and } F_6=8.</math> <math display=block>5{F_5}^2=125\equiv 4 \pmod {11} \;\;\text{ and }\;\;5{F_6}^2=320\equiv 1 \pmod {11}</math> '''Example 3.''' {{math|1=''p'' = 13}}, in this case {{math|1=''p'' ≡ 1 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{13}{5}\bigr) = -1: \qquad \tfrac{1}{2}\left(5\bigl(\tfrac{13}{5}\bigr)-5 \right) =-5, \quad \tfrac{1}{2}\left(5\bigl(\tfrac{13}{5}\bigr)+ 5 \right)=0.</math> <math display=block>F_6=8 \text{ and } F_7=13.</math> <math display=block>5{F_6}^2=320\equiv -5 \pmod {13} \;\;\text{ and }\;\;5{F_7}^2=845\equiv 0 \pmod {13}</math> '''Example 4.''' {{math|1=''p'' = 29}}, in this case {{math|1=''p'' ≡ 1 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{29}{5}\bigr) = +1: \qquad \tfrac{1}{2}\left(5\bigl(\tfrac{29}{5}\bigr)-5 \right)=0, \quad \tfrac{1}{2}\left(5\bigl(\tfrac{29}{5}\bigr)+5 \right)=5.</math> <math display=block>F_{14}=377 \text{ and } F_{15}=610.</math> <math display=block>5{F_{14}}^2=710645\equiv 0 \pmod {29} \;\;\text{ and }\;\;5{F_{15}}^2=1860500\equiv 5 \pmod {29}</math> For odd {{mvar|n}}, all odd prime divisors of {{math|''F''<sub>''n''</sub>}} are congruent to 1 modulo 4, implying that all odd divisors of {{math|1=''F''<sub>''n''</sub>}} (as the products of odd prime divisors) are congruent to 1 modulo 4.{{Sfn | Lemmermeyer | 2000 | loc = ex. 2.27 | p = 73}} For example, <math display=block>F_1 = 1,\ F_3 = 2,\ F_5 = 5,\ F_7 = 13,\ F_9 = {\color{Red}34} = 2 \cdot 17,\ F_{11} = 89,\ F_{13} = 233,\ F_{15} = {\color{Red}610} = 2 \cdot 5 \cdot 61.</math> All known factors of Fibonacci numbers {{math|''F''(''i'')}} for all {{math|''i'' < 50000}} are collected at the relevant repositories.<ref>{{Citation | url = https://mersennus.net/fibonacci/ | title = Fibonacci and Lucas factorizations | publisher = Mersennus}} collects all known factors of {{math|''F''(''i'')}} with {{math|''i'' < 10000}}.</ref><ref>{{Citation | url =http://fibonacci.redgolpe.com/ | title = Factors of Fibonacci and Lucas numbers | publisher = Red golpe}} collects all known factors of {{math|''F''(''i'')}} with {{math|10000 < ''i'' < 50000}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)