Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hahn–Banach theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== * {{Adasch Topological Vector Spaces}} <!--{{sfn|Adasch|1978|p=}}--> * {{Banach Théorie des Opérations Linéaires}} <!--{{sfn|Banach|1932|p=}}--> * {{Berberian Lectures in Functional Analysis and Operator Theory}} <!--{{sfn|Berberian|2014|p=}}--> * {{Bourbaki Topological Vector Spaces}} <!--{{sfn|Bourbaki|1987|p=}}--> * {{Conway A Course in Functional Analysis}} <!--{{sfn|Conway|1990|p=}}--> * {{Edwards Functional Analysis Theory and Applications}} <!--{{sfn|Edwards|1995|p=}}--> * {{Grothendieck Topological Vector Spaces}} <!--{{sfn|Grothendieck|1973|p=}}--> * {{Jarchow Locally Convex Spaces}} <!--{{sfn|Jarchow|1981|p=}}--> * {{Köthe Topological Vector Spaces I}} <!--{{sfn|Köthe| 1983|p=}}--> * {{cite journal|last1=Łoś|first1=Jerzy|author-link1=Jerzy Łoś|last2=Ryll-Nardzewski|first2=Czesław|author-link2=Czesław Ryll-Nardzewski|title=On the application of Tychonoff's theorem in mathematical proofs|journal=Fundamenta Mathematicae|volume=38|issue=1|date=1951|issn=0016-2736|pages=233–237|doi=10.4064/fm-38-1-233-237 |url=https://eudml.org/doc/213246|access-date=7 July 2022|doi-access=free}} <!--{{sfn|Łoś|Ryll-Nardzewski|1951|pp=233–237}}--> * {{cite journal|last=Luxemburg|first=W. A. J.|author-link=Wilhelmus Luxemburg|title=Two Applications of the Method of Construction by Ultrapowers to Analysis|url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-68/issue-4/Two-applications-of-the-method-of-construction-by-ultrapowers-to/bams/1183524688.full|journal=[[Bulletin of the American Mathematical Society]]|publisher=American Mathematical Society|volume=68|issue=4|year=1962|issn=0273-0979|pages=416–419|doi=10.1090/s0002-9904-1962-10824-6|doi-access=free}} <!--{{sfn|Luxemburg|1962|p=}}--> * {{cite book|last=Narici|first=Lawrence|title=Advanced Courses of Mathematical Analysis II|chapter=On the Hahn-Banach Theorem|year=2007|publisher=World Scientific|pages=87–122|doi=10.1142/9789812708441_0006|isbn=978-981-256-652-2 |doi-access=|url=http://at.yorku.ca/p/a/a/o/58.pdf|access-date=7 July 2022}} <!--{{sfn|Narici|2007|p=}}--> * {{cite journal|last1=Narici|first1=Lawrence|last2=Beckenstein|first2=Edward|year=1997|title=The Hahn–Banach Theorem: The Life and Times|url=http://at.yorku.ca/p/a/a/a/16.htm|journal=Topology and Its Applications|volume=77|issue=2|pages=193–211|doi=10.1016/s0166-8641(96)00142-3|doi-access=}} <!--{{sfn|Narici|Beckenstein|1997|p=}}--> * {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!--{{sfn|Narici|Beckenstein|2011|p=}}--> * {{cite journal|last=Pincus|first=David|author-link=David Pincus|title=Independence of the prime ideal theorem from the Hahn Banach theorem|journal=Bulletin of the American Mathematical Society|publisher=American Mathematical Society|volume=78|issue=5|year=1972|issn=0273-0979|doi=10.1090/s0002-9904-1972-13025-8|pages=766–770|url=https://www.ams.org/journals/bull/1972-78-05/S0002-9904-1972-13025-8/S0002-9904-1972-13025-8.pdf|access-date=7 July 2022}} <!--{{sfn|Pincus|1972|pp=766–770}}--> * {{cite book|last=Pincus|first=David|author-link=David Pincus|editor-last1=Hurd|editor-first1=A.|editor-last2=Loeb|editor-first2=P.|year=1974|title=Victoria Symposium on Nonstandard Analysis|chapter=The strength of the Hahn-Banach theorem|series=Lecture Notes in Mathematics|pages=203–248|volume=369|publisher=Springer|publication-place=Berlin, Heidelberg|isbn=978-3-540-06656-9|issn=0075-8434|doi=10.1007/bfb0066014}} <!--{{sfn|Pincus|1974|p=}}--> * Reed, Michael and Simon, Barry, ''Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis,'' Section III.3. Academic Press, San Diego, 1980. {{ISBN|0-12-585050-6}}. * {{Cite book|last1=Reed|first1=Michael|author-link1=Michael C. Reed|last2=Simon|first2=Barry|author2-link=Barry Simon|title=Functional Analysis|publisher=[[Academic Press]]|location=Boston, MA|edition=revised and enlarged|isbn=978-0-12-585050-6|year=1980}} * {{Robertson Topological Vector Spaces}} <!--{{sfn|Robertson|1964|p=}}--> * {{Rudin Walter Functional Analysis|edition=2}} <!--{{sfn|Rudin|1991|p=}}--> * {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!--{{sfn|Schaefer|Wolff|1999|p=}}--> * {{cite journal|last1=Schmitt|first1=Lothar M|year=1992|title=An Equivariant Version of the Hahn–Banach Theorem|url=http://www.math.uh.edu/~hjm/vol18-3.html|journal=Houston J. Of Math.|volume=18|pages=429–447}} * {{Schechter Handbook of Analysis and Its Foundations}}<!--{{ISBN|0-12-622760-8}}--> <!--{{sfn|Schechter|1996|p=}}--> * {{Swartz An Introduction to Functional Analysis}} <!--{{sfn|Swartz|1992|p=}}--> * [[Terence Tao|Tao, Terence]], [http://terrytao.wordpress.com/2007/11/30/the-hahn-banach-theorem-mengers-theorem-and-hellys-theorem The Hahn–Banach theorem, Menger's theorem, and Helly's theorem] * {{Trèves François Topological vector spaces, distributions and kernels}} <!--{{sfn|Trèves|2006|p=}}--> * {{Wilansky Modern Methods in Topological Vector Spaces}} <!--{{sfn|Wilansky|2013|p=}}--> * Wittstock, Gerd, Ein operatorwertiger Hahn-Banach Satz, [http://www.sciencedirect.com/science/article/pii/0022123681900641 J. of Functional Analysis 40 (1981), 127–150] * Zeidler, Eberhard, ''Applied Functional Analysis: main principles and their applications'', Springer, 1995. * {{springer|title=Hahn–Banach theorem|id=p/h046130}} {{Functional Analysis}} {{TopologicalVectorSpaces}} {{Banach spaces}} {{DEFAULTSORT:Hahn-Banach theorem}} [[Category:Articles containing proofs]] [[Category:Linear algebra]] [[Category:Linear functionals]] [[Category:Theorems in functional analysis]] [[Category:Topological vector spaces]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)