Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Fast computation== The theta function ratios provide an efficient way of computing the Jacobi elliptic functions. There is an alternative method, based on the [[arithmetic-geometric mean]] and [[Landen's transformation]]s:<ref name="sala"/> Initialize :<math>a_0=1,\, b_0=\sqrt{1-m}</math> where <math>0<m<1</math>. Define :<math>a_n=\frac{a_{n-1}+b_{n-1}}{2},\, b_n=\sqrt{a_{n-1}b_{n-1}},\, c_n=\frac{a_{n-1}-b_{n-1}}{2}</math> where <math>n\ge 1</math>. Then define :<math>\varphi_N=2^N a_N u</math> for <math>u\in\mathbb{R}</math> and a fixed <math>N\in\mathbb{N}</math>. If :<math>\varphi_{n-1}=\frac{1}{2}\left(\varphi_n+\arcsin \left(\frac{c_n}{a_n}\sin \varphi_n\right)\right)</math> for <math>n\ge 1</math>, then :<math>\operatorname{am}(u,m)=\varphi_0,\quad \operatorname{zn}(u,m)=\sum_{n=1}^N c_n\sin\varphi_n</math> as <math>N\to\infty</math>. This is notable for its rapid convergence. It is then trivial to compute all Jacobi elliptic functions from the Jacobi amplitude <math>\operatorname{am}</math> on the real line.<ref group="note">For the <math>\operatorname{dn}</math> function, <math>\operatorname{dn}(u,m)=\frac{\operatorname{cn}(u,m)}{\operatorname{sn}(K(m)-u,m)}</math> can be used.</ref> In conjunction with the addition theorems for elliptic functions (which hold for complex numbers in general) and the Jacobi transformations, the method of computation described above can be used to compute all Jacobi elliptic functions in the whole complex plane. Another method of fast computation of the Jacobi elliptic functions via the arithmetic–geometric mean, avoiding the computation of the Jacobi amplitude, is due to Herbert E. Salzer:<ref>{{cite journal |last=Salzer |first=Herbert E. |date=July 1962 |title=Quick calculation of Jacobian elliptic functions|journal=Communications of the ACM|volume=5|issue=7|pages=399|doi=10.1145/368273.368573 |s2cid=44953400 |doi-access=free }}</ref> Let :<math>0\le m\le 1,\,0\le u\le K(m),\, a_0=1,\, b_0=\sqrt{1-m},</math> :<math>a_{n+1}=\frac{a_n+b_n}{2},\, b_{n+1}=\sqrt{a_n b_n},\,c_{n+1}=\frac{a_n-b_n}{2}.</math> Set :<math>\begin{align}y_N&=\frac{a_N}{\sin (a_Nu)}\\ y_{N-1}&=y_N+\frac{a_Nc_N}{y_N}\\ y_{N-2}&=y_{N-1}+\frac{a_{N-1}c_{N-1}}{y_{N-1}}\\ \vdots&=\vdots\\ y_0&=y_1+\frac{m}{4y_1}.\end{align}</math> Then :<math>\begin{align}\operatorname{sn}(u,m)&=\frac{1}{y_0}\\ \operatorname{cn}(u,m)&=\sqrt{1-\frac{1}{y_0^2}}\\ \operatorname{dn}(u,m)&=\sqrt{1-\frac{m}{y_0^2}}\end{align}</math> as <math>N\to\infty</math>. Yet, another method for a rapidly converging fast computation of the Jacobi elliptic sine function found in the literature is shown below.<ref>{{Cite journal |last=Smith |first=John I. |date=May 5, 1971 |title=The Even- and Odd-Mode Capacitance Parameters for Coupled Lines in Suspended Substrate |url=https://ieeexplore.ieee.org/document/1127543 |journal=IEEE Transactions on Microwave Theory and Techniques |volume=MTT-19 |issue=5 |pages=430 |doi=10.1109/TMTT.1971.1127543 |bibcode=1971ITMTT..19..424S |via=IEEE Xplore}}</ref> Let: :<math>\begin{align} &a_0 = u &b_0 = \frac{1-\sqrt{1-m}}{1+\sqrt{1-m}} \\ &a_1 = \frac{a_0}{1+b_0} &b_1 = \frac{1-\sqrt{1-b^2_0 }}{1+\sqrt{1-b^2_0}}\\ &\vdots = \vdots &\vdots = \vdots \\ &a_n = \frac{a_{n-1}}{1+b_{n-1}} &b_n = \frac{1-\sqrt{1-b^2_{n-1}}}{1+\sqrt{1-b^2_{n-1}}}\\ \end{align}</math> Then set: :<math>\begin{align} y_{n+1} &= \sin(a_n) \\ y_{n} &= \frac{y_{n+1}(1+b_n)}{1+y^2_{n+1}b_n} \\ \vdots &= \vdots\\ y_0 &= \frac{y_1(1+b_0)}{1+y^2_1b_0} \\ \end{align}</math> Then: :<math>\operatorname{sn}(u,m) = y_0 \text{ as }n \rightarrow\infty</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)