Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Operations on multiple independent normal variables ==== * Any [[linear combination]] of independent normal deviates is a normal deviate. * If <math display=inline>X_1, X_2, \ldots, X_n</math> are independent standard normal random variables, then the sum of their squares has the [[chi-squared distribution]] with {{tmath|n}} degrees of freedom <math display=block>X_1^2 + \cdots + X_n^2 \sim \chi_n^2.</math> * If <math display=inline>X_1, X_2, \ldots, X_n</math> are independent normally distributed random variables with means {{tmath|\mu}} and variances <math display=inline>\sigma^2</math>, then their [[sample mean]] is independent from the sample [[standard deviation]],<ref>{{cite journal|title=A Characterization of the Normal Distribution |last=Lukacs |first=Eugene |journal=[[The Annals of Mathematical Statistics]] |issn=0003-4851 |volume=13|issue=1 |year=1942 |pages=91–3 |jstor=2236166 |doi=10.1214/aoms/1177731647 |doi-access=free}}</ref> which can be demonstrated using [[Basu's theorem]] or [[Cochran's theorem]].<ref>{{cite journal |title=On Some Characterizations of the Normal Distribution | last1=Basu|first1=D. |last2=Laha|first2=R. G.|journal=[[Sankhyā (journal)|Sankhyā]]|issn=0036-4452| volume=13|issue=4|year=1954|pages=359–62| jstor=25048183}}</ref> The ratio of these two quantities will have the [[Student's t-distribution]] with <math display=inline>n-1</math> degrees of freedom: <math display=block>t = \frac{\overline X - \mu}{S/\sqrt{n}} = \frac{\frac{1}{n}(X_1+\cdots+X_n) - \mu}{\sqrt{\frac{1}{n(n-1)}\left[(X_1-\overline X)^2 + \cdots+(X_n-\overline X)^2\right]}} \sim t_{n-1}.</math> * If <math display=inline>X_1, X_2, \ldots, X_n</math>, <math display=inline>Y_1, Y_2, \ldots, Y_m</math> are independent standard normal random variables, then the ratio of their normalized sums of squares will have the [[F-distribution]] with {{math|(''n'', ''m'')}} degrees of freedom:<ref>{{cite book |title=Testing Statistical Hypotheses |edition=2nd | first=E. L. | last=Lehmann | publisher=Springer |year=1997 | isbn=978-0-387-94919-2| page=199}}</ref> <math display=block>F = \frac{\left(X_1^2+X_2^2+\cdots+X_n^2\right)/n}{\left(Y_1^2+Y_2^2+\cdots+Y_m^2\right)/m} \sim F_{n,m}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)