Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic reciprocity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Eisenstein integers=== Consider the following third root of unity: :<math>\omega = \frac{-1 + \sqrt{-3}}{2}=e^\frac{2\pi \imath}{3}.</math> The ring of Eisenstein integers is <math>\Z[\omega].</math><ref>See the articles on [[Eisenstein integer]] and [[cubic reciprocity]] for definitions and notations.</ref> For an Eisenstein prime <math>\pi, \mathrm{N} \pi \neq 3,</math> and an Eisenstein integer <math>\alpha</math> with <math>\gcd(\alpha, \pi) = 1,</math> define the quadratic character for <math>\Z[\omega]</math> by the formula :<math>\left[\frac{\alpha}{\pi}\right]_2 \equiv \alpha^\frac{\mathrm{N} \pi - 1}{2}\bmod{\pi} = \begin{cases} 1 &\exists \eta \in \Z[\omega]: \alpha \equiv \eta^2 \bmod{\pi} \\ -1 &\text{otherwise} \end{cases}</math> Let λ = ''a'' + ''bω'' and μ = ''c'' + ''dω'' be distinct Eisenstein primes where ''a'' and ''c'' are not divisible by 3 and ''b'' and ''d'' are divisible by 3. Eisenstein proved<ref>Lemmermeyer, Thm. 7.10, p. 217</ref> :<math> \left[\frac{\lambda}{\mu}\right]_2 \left [\frac{\mu}{\lambda}\right ]_2 = (-1)^{\frac{\mathrm{N} \lambda - 1}{2}\frac{\mathrm{N} \mu-1}{2}}, \qquad \left [\frac{1-\omega}{\lambda}\right ]_2 =\left(\frac{a}{3}\right), \qquad \left [\frac{2}{\lambda}\right ]_2 =\left (\frac{2}{\mathrm{N} \lambda }\right).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)