Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Heisenberg limit=== In [[quantum metrology]], and especially [[interferometry]], the '''Heisenberg limit''' is the optimal rate at which the accuracy of a measurement can scale with the energy used in the measurement. Typically, this is the measurement of a phase (applied to one arm of a [[beam-splitter]]) and the energy is given by the number of photons used in an [[interferometer]]. Although some claim to have broken the Heisenberg limit, this reflects disagreement on the definition of the scaling resource.<ref>{{Cite journal | last1 = Giovannetti | first1 = V. | last2 = Lloyd | first2 = S. | last3 = Maccone | first3 = L. | doi = 10.1038/nphoton.2011.35 | title = Advances in quantum metrology | journal = Nature Photonics | volume = 5 | issue = 4 | pages = 222 | year = 2011 | arxiv = 1102.2318 | bibcode = 2011NaPho...5..222G | s2cid = 12591819 }}; [https://arxiv.org/abs/1102.2318 arXiv] {{Webarchive|url=https://web.archive.org/web/20200806200530/https://arxiv.org/abs/1102.2318 |date=2020-08-06 }}</ref> Suitably defined, the Heisenberg limit is a consequence of the basic principles of quantum mechanics and cannot be beaten, although the weak Heisenberg limit can be beaten.<ref>{{Cite journal|last=Luis|first=Alfredo|date=2017-03-13|title=Breaking the weak Heisenberg limit | journal=Physical Review A | language=en|volume=95|issue=3 | pages=032113 | doi=10.1103/PhysRevA.95.032113 | arxiv=1607.07668 | bibcode=2017PhRvA..95c2113L | s2cid=55838380|issn=2469-9926}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)