Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fractional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fractional Schrödinger equation in quantum theory=== The [[fractional Schrödinger equation]], a fundamental equation of [[fractional quantum mechanics]], has the following form:<ref>{{cite journal |last=Laskin |first=N. |year=2002 |title=Fractional Schrodinger equation |journal=Phys. Rev. E |volume=66 |issue=5 |pages=056108 |arxiv=quant-ph/0206098 |citeseerx=10.1.1.252.6732 |doi=10.1103/PhysRevE.66.056108 |pmid=12513557 |bibcode=2002PhRvE..66e6108L |s2cid=7520956}}</ref><ref>{{cite book |doi=10.1142/10541 |title=Fractional Quantum Mechanics |year=2018 |last1=Laskin |first1=Nick |isbn=978-981-322-379-0 |citeseerx=10.1.1.247.5449}}</ref> <math display="block">i\hbar \frac{\partial \psi (\mathbf{r},t)}{\partial t}=D_{\alpha } \left(-\hbar^2\Delta \right)^{\frac{\alpha}{2}}\psi (\mathbf{r},t)+V(\mathbf{r},t)\psi (\mathbf{r},t)\,.</math> where the solution of the equation is the [[wavefunction]] {{math|''ψ''('''r''', ''t'')}} – the quantum mechanical [[probability amplitude]] for the particle to have a given [[position vector]] {{math|'''r'''}} at any given time {{mvar|t}}, and {{mvar|ħ}} is the [[reduced Planck constant]]. The [[potential energy]] function {{math|''V''('''r''', ''t'')}} depends on the system. Further, <math display="inline">\Delta = \frac{\partial^2}{\partial\mathbf{r}^2}</math> is the [[Laplace operator]], and {{mvar|D<sub>α</sub>}} is a scale constant with physical [[dimensional analysis|dimension]] {{math|1=[''D<sub>α</sub>''] = J<sup>1 − ''α''</sup>·m<sup>''α''</sup>·s<sup>−''α''</sup> = kg<sup>1 − ''α''</sup>·m<sup>2 − ''α''</sup>·s<sup>''α'' − 2</sup>}}, (at {{math|1=''α'' = 2}}, <math display="inline">D_2 = \frac{1}{2m}</math> for a particle of mass {{mvar|m}}), and the operator {{math|(−''ħ''<sup>2</sup>Δ)<sup>''α''/2</sup>}} is the 3-dimensional fractional quantum Riesz derivative defined by <math display="block">(-\hbar^2\Delta)^\frac{\alpha}{2}\psi (\mathbf{r},t) = \frac 1 {(2\pi \hbar)^3} \int d^3 p e^{\frac{i}{\hbar} \mathbf{p}\cdot\mathbf{r}}|\mathbf{p}|^\alpha \varphi (\mathbf{p},t) \,.</math> The index {{mvar|α}} in the fractional Schrödinger equation is the Lévy index, {{math|1 < ''α'' ≤ 2}}. ====Variable-order fractional Schrödinger equation==== As a natural generalization of the [[fractional Schrödinger equation]], the variable-order fractional Schrödinger equation has been exploited to study fractional quantum phenomena:<ref>{{cite journal |last1=Bhrawy |first1=A.H. |last2=Zaky |first2=M.A. |year=2017 |title=An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations |journal=Applied Numerical Mathematics |volume=111 |pages=197–218 |doi=10.1016/j.apnum.2016.09.009}}</ref> <math display="block">i\hbar \frac{\partial \psi^{\alpha(\mathbf{r})} (\mathbf{r},t)}{\partial t^{\alpha(\mathbf{r})} } = \left(-\hbar^2\Delta \right)^{\frac{\beta(t)}{2}}\psi (\mathbf{r},t)+V(\mathbf{r},t)\psi (\mathbf{r},t),</math> where <math display="inline">\Delta = \frac{\partial^2}{\partial\mathbf{r}^2}</math> is the [[Laplace operator]] and the operator {{math|(−''ħ''<sup>2</sup>Δ)<sup>''β''(''t'')/2</sup>}} is the variable-order fractional quantum Riesz derivative.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)