Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange multiplier
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Additional text and interactive applets === * {{cite web |author=Resnik |title=Simple explanation with an example of governments using taxes as Lagrange multipliers |website=umiacs.umd.edu |publisher=[[University of Maryland]] |url=http://www.umiacs.umd.edu/~resnik/ling848_fa2004/lagrange.html }} * {{cite web |author=Klein, Dan |title=Lagrange multipliers without permanent scarring] Explanation with focus on the intuition |website=nlp.cs.berkeley.edu |publisher=[[University of California, Berkeley]] |url=http://nlp.cs.berkeley.edu/tutorials/lagrange-multipliers.pdf }} * {{cite web |author=Sathyanarayana, Shashi |title=Geometric representation of method of Lagrange multipliers |type=''Mathematica'' demonstration |website=wolfram.com |publisher=[[Wolfram Research]] |url=http://demonstrations.wolfram.com/GeometricRepresentationOfMethodOfLagrangeMultipliers |quote=Needs Internet Explorer / Firefox / Safari. }} β Provides compelling insight in 2 dimensions that at a minimizing point, the direction of steepest descent must be perpendicular to the tangent of the constraint curve at that point. * {{cite web |title=Lagrange multipliers β two variables |type=Applet |website=MIT Open Courseware (ocw.mit.edu) |publisher=[[Massachusetts Institute of Technology]] |url=http://ocw.mit.edu/ans7870/18/18.02/f07/tools/LagrangeMultipliersTwoVariables.html }} * {{cite web |title=Lagrange multipliers |date=Fall 2007 |type=video lecture |series=Mathematics 18-02: Multivariable calculus |volume=Lecture 13 |website=MIT Open Courseware (ocw.mit.edu) |publisher=[[Massachusetts Institute of Technology]] |url=http://ocw.mit.edu/courses/mathematics/18-02-multivariable-calculus-fall-2007/video-lectures/lecture-13-lagrange-multipliers/ }} * {{cite web |author=Bertsekas |title=Details on Lagrange multipliers |type=slides / course lecture |series=Non-Linear Programming |volume=Lectures 11 and 12 |website=athenasc.com |url=http://www.athenasc.com/NLP_Slides.pdf }} β Course slides accompanying text on nonlinear optimization * {{cite web |author=Wyatt, John |date=7 April 2004 |orig-date=19 November 2002 |title=Legrange multipliers, constrained optimization, and the maximum entropy principle |website=www-mtl.mit.edu |series={{nobr|Elec E & C S / Mech E 6.050}} β Information, entropy, and computation |volume=Unit 9 |url=http://www-mtl.mit.edu/Courses/6.050/2004/unit9/wyatt.apr.7.pdf }} β Geometric idea behind Lagrange multipliers * {{cite web |title=Using Lagrange multipliers in optimization |date=2011-12-24 |type=MATLAB example |website=matlab.cheme.cmu.edu |publisher=Carnegie Mellon University |place=Pittsburgh, PA |url=http://matlab.cheme.cmu.edu/2011/12/24/using-lagrange-multipliers-in-optimization/ }} {{Calculus topics}} {{Joseph-Louis Lagrange}} {{authority control}} [[Category:Multivariable calculus]] [[Category:Mathematical optimization]] [[Category:Mathematical and quantitative methods (economics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)