Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambert W function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Bernoulli numbers and Todd genus === The equation (linked with the generating functions of [[Bernoulli number]]s and [[Genus of a multiplicative sequence|Todd genus]]): : <math> Y = \frac{X}{1-e^X}</math> can be solved by means of the two real branches {{math|''W''<sub>0</sub>}} and {{math|''W''<sub>β1</sub>}}: : <math> X(Y) = \begin{cases} W_{-1}\left( Y e^Y\right) - W_0\left( Y e^Y\right) = Y - W_0\left( Y e^Y\right) &\text{for }Y < -1,\\ W_0\left( Y e^Y\right) - W_{-1}\left( Y e^Y\right) = Y - W_{-1}\left(Y e^Y\right) &\text{for }-1 < Y < 0. \end{cases}</math> This application shows that the branch difference of the {{mvar|W}} function can be employed in order to solve other transcendental equations.<ref>[https://web.archive.org/web/20150212084155/http://www.apmaths.uwo.ca/~djeffrey/Offprints/SYNASC2014.pdf D. J. Jeffrey and J. E. Jankowski, "Branch differences and Lambert ''W''"]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)