Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Negative binomial distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multiplicity observations (physics)=== The negative binomial distribution has been the most effective statistical model for a broad range of multiplicity observations in [[particle collision]] experiments, e.g., <math>p\bar p,\ hh,\ hA,\ AA,\ e^{+}e^-</math> <ref>{{Cite journal |last1=Grosse-Oetringhaus |first1=Jan Fiete |last2=Reygers |first2=Klaus |date=2010-08-01 |title=Charged-particle multiplicity in proton–proton collisions |url=https://iopscience.iop.org/article/10.1088/0954-3899/37/8/083001 |journal=Journal of Physics G: Nuclear and Particle Physics |volume=37 |issue=8 |pages=083001 |doi=10.1088/0954-3899/37/8/083001 |issn=0954-3899|arxiv=0912.0023 |s2cid=119233810 }}</ref><ref>{{Cite journal |last1=Rybczyński |first1=Maciej |last2=Wilk |first2=Grzegorz |last3=Włodarczyk |first3=Zbigniew |date=2019-05-31 |title=Intriguing properties of multiplicity distributions |journal=Physical Review D |language=en |volume=99 |issue=9 |page=094045 |doi=10.1103/PhysRevD.99.094045 |arxiv=1811.07197 |bibcode=2019PhRvD..99i4045R |issn=2470-0010|doi-access=free }}</ref><ref>{{Cite journal |last1=Tarnowsky |first1=Terence J. |last2=Westfall |first2=Gary D. |date=2013-07-09 |title=First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions |journal=Physics Letters B |volume=724 |issue=1 |pages=51–55 |doi=10.1016/j.physletb.2013.05.064 |arxiv=1210.8102 |bibcode=2013PhLB..724...51T |issn=0370-2693|doi-access=free }}</ref><ref>{{Cite journal |last1=Derrick |first1=M. |last2=Gan |first2=K. K. |last3=Kooijman |first3=P. |last4=Loos |first4=J. S. |last5=Musgrave |first5=B. |last6=Price |first6=L. E. |last7=Repond |first7=J. |last8=Schlereth |first8=J. |last9=Sugano |first9=K. |last10=Weiss |first10=J. M. |last11=Wood |first11=D. E. |last12=Baranko |first12=G. |last13=Blockus |first13=D. |last14=Brabson |first14=B. |last15=Brom |first15=J. M. |date=1986-12-01 |title=<nowiki>Study of quark fragmentation in ${e}^{+}$${e}^{\mathrm{\ensuremath{-}}}$ annihilation at 29 GeV: Charged-particle multiplicity and single-particle rapidity distributions</nowiki> |url=https://link.aps.org/doi/10.1103/PhysRevD.34.3304 |journal=Physical Review D |volume=34 |issue=11 |pages=3304–3320 |doi=10.1103/PhysRevD.34.3304|pmid=9957066 |hdl=1808/15222 |hdl-access=free }}</ref><ref>{{Cite journal |last=Zborovský |first=I. |date=2018-10-10 |title=Three-component multiplicity distribution, oscillation of combinants and properties of clans in pp collisions at the LHC |journal=The European Physical Journal C |language=en |volume=78 |issue=10 |pages=816 |doi=10.1140/epjc/s10052-018-6287-x |arxiv=1811.11230 |bibcode=2018EPJC...78..816Z |issn=1434-6052|doi-access=free }}</ref> (See <ref>{{Cite book |last1=Kittel |first1=Wolfram |title=Soft multihardon dynamics |last2=De Wolf |first2=Eddi A |publisher=World Scientific |year=2005}}</ref> for an overview), and is argued to be a [[scale-invariant]] property of matter,<ref>{{Cite journal |last=Schaeffer |first=R |date=1984 |title=Determination of the galaxy N-point correlation function |journal=Astronomy and Astrophysics |volume=134 |issue=2 |pages=L15|bibcode=1984A&A...134L..15S }}</ref><ref>{{Cite journal |last=Schaeffer |first=R |date=1985 |title=The probability generating function for galaxy clustering |journal=Astronomy and Astrophysics |volume=144 |issue=1 |pages=L1–L4|bibcode=1985A&A...144L...1S }}</ref> providing the best fit for astronomical observations, where it predicts the number of galaxies in a region of space.<ref>{{Cite journal |last1=Perez |first1=Lucia A. |last2=Malhotra |first2=Sangeeta |last3=Rhoads |first3=James E. |last4=Tilvi |first4=Vithal |date=2021-01-07 |title=Void Probability Function of Simulated Surveys of High-redshift Ly α Emitters |journal=The Astrophysical Journal |volume=906 |issue=1 |pages=58 |doi=10.3847/1538-4357/abc88b |arxiv=2011.03556 |bibcode=2021ApJ...906...58P |issn=1538-4357 |doi-access=free }}</ref><ref>{{Cite journal |last1=Hurtado-Gil |first1=Lluís |last2=Martínez |first2=Vicent J. |last3=Arnalte-Mur |first3=Pablo |last4=Pons-Bordería |first4=María-Jesús |last5=Pareja-Flores |first5=Cristóbal |last6=Paredes |first6=Silvestre |date=2017-05-01 |title=The best fit for the observed galaxy counts-in-cell distribution function |url=https://www.aanda.org/articles/aa/abs/2017/05/aa29097-16/aa29097-16.html |journal=Astronomy & Astrophysics |language=en |volume=601 |pages=A40 |doi=10.1051/0004-6361/201629097 |arxiv=1703.01087 |bibcode=2017A&A...601A..40H |issn=0004-6361|doi-access=free }}</ref><ref>{{Cite journal |last1=Elizalde |first1=E. |last2=Gaztanaga |first2=E. |date=January 1992 |title=Void probability as a function of the void's shape and scale-invariant models |journal=Monthly Notices of the Royal Astronomical Society |volume=254 |issue=2 |pages=247–256 |doi=10.1093/mnras/254.2.247 |issn=0035-8711|doi-access=free |hdl=2060/19910019799 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Hameeda |first1=M |last2=Plastino |first2=Angelo |last3=Rocca |first3=M C |date=2021-03-01 |title=Generalized Poisson distributions for systems with two-particle interactions |journal=IOP SciNotes |volume=2 |issue=1 |pages=015003 |doi=10.1088/2633-1357/abec9f |bibcode=2021IOPSN...2a5003H |issn=2633-1357|doi-access=free |hdl=11336/181371 |hdl-access=free }}</ref> The phenomenological justification for the effectiveness of the negative binomial distribution in these contexts remained unknown for fifty years, since their first observation in 1973.<ref>{{Cite journal |last=Giovannini |first=A. |date=June 1973 |title="Thermal chaos" and "coherence" in multiplicity distributions at high energies |url=http://dx.doi.org/10.1007/bf02734689 |journal=Il Nuovo Cimento A |volume=15 |issue=3 |pages=543–551 |doi=10.1007/bf02734689 |bibcode=1973NCimA..15..543G |s2cid=118805136 |issn=0369-3546|url-access=subscription }}</ref> In 2023, a proof from [[first principle]]s was eventually demonstrated by Scott V. Tezlaf, where it was shown that the negative binomial distribution emerges from [[Spacetime symmetries|symmetries]] in the [[Dynamics (mechanics)|dynamical equations]] of a [[canonical ensemble]] of particles in [[Minkowski space]].<ref name=":1">{{Cite journal |last=Tezlaf |first=Scott V. |date=2023-09-29 |title=Significance of the negative binomial distribution in multiplicity phenomena |url=https://iopscience.iop.org/article/10.1088/1402-4896/acfead |journal=Physica Scripta |volume=98 |issue=11 |doi=10.1088/1402-4896/acfead |arxiv=2310.03776 |bibcode=2023PhyS...98k5310T |s2cid=263300385 |issn=0031-8949}}</ref> Roughly, given an expected number of trials <math>\langle n \rangle</math> and expected number of successes <math>\langle r \rangle</math>, where : <math>\langle \mathcal{n} \rangle - \langle r \rangle = k, \quad \quad \langle p \rangle = \frac{\langle r \rangle}{\langle \mathcal{n} \rangle} \quad\quad \quad \implies \quad\quad \quad \langle \mathcal{n} \rangle = \frac{k}{1-\langle p \rangle}, \quad \quad \langle {r} \rangle = \frac{k\langle p \rangle}{1 - \langle p \rangle},</math> an [[Isomorphism|isomorphic]] set of equations can be identified with the parameters of a [[Special relativity|relativistic]] [[current density]] of a canonical ensemble of massive particles, via : <math>c^2\langle \rho^2 \rangle - \langle j^2 \rangle = c^2\rho_0^2, \quad \quad \quad \langle \beta^2_v \rangle = \frac{\langle j^2 \rangle}{c^2\langle \rho^2 \rangle} \quad \quad \implies \quad \quad c^2\langle \rho^2 \rangle = \frac{c^2\rho_0^2}{1-\langle \beta^2_v \rangle}, \quad \quad \quad \langle j^2 \rangle = \frac{c^2\rho_0^2 \langle \beta^2_v \rangle}{1-\langle \beta^2_v \rangle},</math> where <math>\rho_0</math> is the rest [[density]], <math>\langle \rho ^2 \rangle</math> is the relativistic mean square density, <math>\langle j ^2 \rangle</math> is the relativistic mean square current density, and <math>\langle \beta^2_v \rangle=\langle v^2 \rangle /c^2</math>, where <math>\langle v ^2 \rangle</math> is the [[Maxwell–Boltzmann distribution|mean square speed]] of the particle ensemble and <math>c</math> is the [[speed of light]]—such that one can establish the following [[Bijection|bijective map]]: : <math>c^2\rho_0^2 \mapsto k, \quad \quad \langle \beta^2_v \rangle \mapsto \langle p \rangle, \quad \quad c^2\langle\rho^2 \rangle \mapsto \langle \mathcal{n} \rangle, \quad \quad \langle j^2 \rangle \mapsto \langle r \rangle.</math> A rigorous alternative proof of the above correspondence has also been demonstrated through [[quantum mechanics]] via the Feynman [[Path integral formulation|path integral]].<ref name=":1" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)