Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Perron–Frobenius theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Terminology== A problem that causes confusion is a lack of standardisation in the definitions. For example, some authors use the terms ''strictly positive'' and ''positive'' to mean > 0 and ≥ 0 respectively. In this article ''positive'' means > 0 and ''non-negative'' means ≥ 0. Another vexed area concerns ''decomposability'' and ''reducibility'': ''irreducible'' is an overloaded term. For avoidance of doubt a non-zero non-negative square matrix ''A'' such that 1 + ''A'' is primitive is sometimes said to be ''connected''. Then irreducible non-negative square matrices and connected matrices are synonymous.<ref>For surveys of results on irreducibility, see [[Olga Taussky-Todd]] and [[Richard A. Brualdi]].</ref> The nonnegative eigenvector is often normalized so that the sum of its components is equal to unity; in this case, the eigenvector is the vector of a [[probability distribution]] and is sometimes called a ''stochastic eigenvector''. ''Perron–Frobenius eigenvalue'' and ''dominant eigenvalue'' are alternative names for the Perron root. Spectral projections are also known as ''spectral projectors'' and ''spectral idempotents''. The period is sometimes referred to as the ''index of imprimitivity'' or the ''order of cyclicity''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)