Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Interpolation and approximation === {{See also|Polynomial interpolation|Orthogonal polynomials|B-spline|spline interpolation}} The simple structure of polynomial functions makes them quite useful in analyzing general functions using polynomial approximations. An important example in [[calculus]] is [[Taylor's theorem]], which roughly states that every [[differentiable function]] locally looks like a polynomial function, and the [[Stone–Weierstrass theorem]], which states that every [[continuous function]] defined on a [[compact space|compact]] [[interval (mathematics)|interval]] of the real axis can be approximated on the whole interval as closely as desired by a polynomial function. Practical methods of approximation include [[polynomial interpolation]] and the use of [[spline (mathematics)|splines]].<ref>{{cite book |last=de Villiers |first=Johann |title=Mathematics of Approximation |publisher=Springer |year=2012 |isbn=9789491216503 |url=https://books.google.com/books?id=l5mIro_6RlUC}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)