Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 2 non-zero adjacent columns === Let <math>E^r_{p, q}</math> be a homological spectral sequence such that <math>E^2_{p, q} = 0</math> for all ''p'' other than 0, 1. Visually, this is the spectral sequence with <math>E^2</math>-page :<math>\begin{matrix} & \vdots & \vdots & \vdots & \vdots & \\ \cdots & 0 & E^2_{0,2} & E^2_{1,2} & 0 & \cdots \\ \cdots & 0 & E^2_{0,1} & E^2_{1,1} & 0 & \cdots \\ \cdots & 0 & E^2_{0,0} & E^2_{1,0} & 0 & \cdots \\ \cdots & 0 & E^2_{0,-1} & E^2_{1,-1} & 0 & \cdots \\ & \vdots & \vdots & \vdots & \vdots & \end{matrix}</math> The differentials on the second page have degree (-2, 1), so they are of the form :<math>d^2_{p,q}:E^2_{p,q} \to E^2_{p-2,q+1}</math> These maps are all zero since they are :<math>d^2_{0,q}:E^2_{0,q} \to 0</math>, <math>d^2_{1,q}:E^2_{1,q} \to 0</math> hence the spectral sequence degenerates: <math>E^{\infty} = E^2</math>. Say, it converges to <math>H_*</math> with a filtration :<math>0 = F_{-1} H_n \subset F_0 H_n \subset \dots \subset F_n H_n = H_n</math> such that <math>E^{\infty}_{p, q} = F_p H_{p+q}/F_{p-1} H_{p+q}</math>. Then <math>F_0 H_n = E^2_{0, n}</math>, <math>F_1 H_n / F_0 H_n = E^2_{1, n -1}</math>, <math>F_2 H_n / F_1 H_n = 0</math>, <math>F_3 H_n / F_2 H_n = 0</math>, etc. Thus, there is the exact sequence:<ref>{{harvnb|Weibel|1994|loc=Exercise 5.2.1.}}; there are typos in the exact sequence, at least in the 1994 edition.</ref> :<math>0 \to E^2_{0, n} \to H_n \to E^2_{1, n - 1} \to 0</math>. Next, let <math>E^r_{p, q}</math> be a spectral sequence whose second page consists only of two lines ''q'' = 0, 1. This need not degenerate at the second page but it still degenerates at the third page as the differentials there have degree (-3, 2). Note <math>E^3_{p, 0} = \operatorname{ker} (d: E^2_{p, 0} \to E^2_{p - 2, 1})</math>, as the denominator is zero. Similarly, <math>E^3_{p, 1} = \operatorname{coker}(d: E^2_{p+2, 0} \to E^2_{p, 1})</math>. Thus, :<math>0 \to E^{\infty}_{p, 0} \to E^2_{p, 0} \overset{d}\to E^2_{p-2, 1} \to E^{\infty}_{p-2, 1} \to 0</math>. Now, say, the spectral sequence converges to ''H'' with a filtration ''F'' as in the previous example. Since <math>F_{p-2} H_{p} / F_{p-3} H_{p} = E^{\infty}_{p-2, 2} = 0</math>, <math>F_{p-3} H_p / F_{p-4} H_p = 0</math>, etc., we have: <math>0 \to E^{\infty}_{p - 1, 1} \to H_p \to E^{\infty}_{p, 0} \to 0</math>. Putting everything together, one gets:<ref>{{harvnb|Weibel|1994|loc=Exercise 5.2.2.}}</ref> :<math>\cdots \to H_{p+1} \to E^2_{p + 1, 0} \overset{d}\to E^2_{p - 1, 1} \to H_p \to E^2_{p, 0} \overset{d}\to E^2_{p - 2, 1} \to H_{p-1} \to \dots.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)