Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
24-cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Rings === In the 24-cell there are sets of rings of six different kinds, described separately in detail in other sections of this article. This section describes how the different kinds of rings are [[#Relationships among interior polytopes|intertwined]]. The 24-cell contains four kinds of [[#Geodesics|geodesic fibers]] (polygonal rings running through vertices): [[#Squares|great circle squares]] and their [[16-cell#Helical construction|isoclinic helix octagrams]],{{Efn|name=square fibrations}} and [[#Hexagons|great circle hexagons]] and their [[#Isoclinic rotations|isoclinic helix hexagrams]].{{Efn|name=hexagonal fibrations}} It also contains two kinds of [[#Cell rings|cell rings]] (chains of octahedra bent into a ring in the fourth dimension): four octahedra connected vertex-to-vertex and bent into a square, and six octahedra connected face-to-face and bent into a hexagon. ==== 4-cell rings ==== Four unit-edge-length octahedra can be connected vertex-to-vertex along a common axis of length 4{{radic|2}}. The axis can then be bent into a square of edge length {{radic|2}}. Although it is possible to do this in a space of only three dimensions, that is not how it occurs in the 24-cell. Although the {{radic|2}} axes of the four octahedra occupy the same plane, forming one of the 18 {{radic|2}} great squares of the 24-cell, each octahedron occupies a different 3-dimensional hyperplane,{{Efn|Just as each face of a [[polyhedron]] occupies a different (2-dimensional) face plane, each cell of a [[polychoron]] occupies a different (3-dimensional) cell [[hyperplane]].{{Efn|name=hyperplanes}}}} and all four dimensions are utilized. The 24-cell can be partitioned into 6 such 4-cell rings (three different ways), mutually interlinked like adjacent links in a chain (but these [[Link (knot theory)|links]] all have a common center). An [[#Isoclinic rotations|isoclinic rotation]] in the great square plane by a multiple of 90° takes each octahedron in the ring to an octahedron in the ring. ==== 6-cell rings ==== [[File:Six face-bonded octahedra.jpg|thumb|400px|A 4-dimensional ring of 6 face-bonded octahedra, bounded by two intersecting sets of three Clifford parallel great hexagons of different colors, cut and laid out flat in 3 dimensional space.{{Efn|name=6-cell ring}}]]Six regular octahedra can be connected face-to-face along a common axis that passes through their centers of volume, forming a stack or column with only triangular faces. In a space of four dimensions, the axis can then be bent 60° in the fourth dimension at each of the six octahedron centers, in a plane orthogonal to all three orthogonal central planes of each octahedron, such that the top and bottom triangular faces of the column become coincident. The column becomes a ring around a hexagonal axis. The 24-cell can be partitioned into 4 such rings (four different ways), mutually interlinked. Because the hexagonal axis joins cell centers (not vertices), it is not a great hexagon of the 24-cell.{{Efn|The axial hexagon of the 6-octahedron ring does not intersect any vertices or edges of the 24-cell, but it does hit faces. In a unit-edge-length 24-cell, it has edges of length 1/2.{{Efn|When unit-edge octahedra are placed face-to-face the distance between their centers of volume is {{radic|2/3}} ≈ 0.816.{{Sfn|Coxeter|1973|pp=292-293|loc=Table I(i): Octahedron}} When 24 face-bonded octahedra are bent into a 24-cell lying on the 3-sphere, the centers of the octahedra are closer together in 4-space. Within the curved 3-dimensional surface space filled by the 24 cells, the cell centers are still {{radic|2/3}} apart along the curved geodesics that join them. But on the straight chords that join them, which dip inside the 3-sphere, they are only 1/2 edge length apart.}} Because it joins six cell centers, the axial hexagon is a great hexagon of the smaller dual 24-cell that is formed by joining the 24 cell centers.{{Efn|name=common core}}}} However, six great hexagons can be found in the ring of six octahedra, running along the edges of the octahedra. In the column of six octahedra (before it is bent into a ring) there are six spiral paths along edges running up the column: three parallel helices spiraling clockwise, and three parallel helices spiraling counterclockwise. Each clockwise helix intersects each counterclockwise helix at two vertices three edge lengths apart. Bending the column into a ring changes these helices into great circle hexagons.{{Efn|There is a choice of planes in which to fold the column into a ring, but they are equivalent in that they produce congruent rings. Whichever folding planes are chosen, each of the six helices joins its own two ends and forms a simple great circle hexagon. These hexagons are ''not'' helices: they lie on ordinary flat great circles. Three of them are Clifford parallel{{Efn|name=Clifford parallels}} and belong to one [[#Hexagons|hexagonal]] fibration. They intersect the other three, which belong to another hexagonal fibration. The three parallel great circles of each fibration spiral around each other in the sense that they form a [[Link (knot theory)|link]] of three ordinary circles, but they are not twisted: the 6-cell ring has no [[Torsion of a curve|torsion]], either clockwise or counterclockwise.{{Efn|name=6-cell ring is not chiral}}|name=6-cell ring}} The ring has two sets of three great hexagons, each on three Clifford parallel great circles.{{Efn|The three great hexagons are Clifford parallel, which is different than ordinary parallelism.{{Efn|name=Clifford parallels}} Clifford parallel great hexagons pass through each other like adjacent links of a chain, forming a [[Hopf link]]. Unlike links in a 3-dimensional chain, they share the same center point. In the 24-cell, Clifford parallel great hexagons occur in sets of four, not three. The fourth parallel hexagon lies completely outside the 6-cell ring; its 6 vertices are completely disjoint from the ring's 18 vertices.}} The great hexagons in each parallel set of three do not intersect, but each intersects the other three great hexagons (to which it is not Clifford parallel) at two antipodal vertices. A [[#Simple rotations|simple rotation]] in any of the great hexagon planes by a multiple of 60° rotates only that hexagon invariantly, taking each vertex in that hexagon to a vertex in the same hexagon. An [[#Isoclinic rotations|isoclinic rotation]] by 60° in any of the six great hexagon planes rotates all three Clifford parallel great hexagons invariantly, and takes each octahedron in the ring to a ''non-adjacent'' octahedron in the ring.{{Efn|An isoclinic rotation by a multiple of 60° takes even-numbered octahedra in the ring to even-numbered octahedra, and odd-numbered octahedra to odd-numbered octahedra.{{Efn|In the column of 6 octahedral cells, we number the cells 0-5 going up the column. We also label each vertex with an integer 0-5 based on how many edge lengths it is up the column.}} It is impossible for an even-numbered octahedron to reach an odd-numbered octahedron, or vice versa, by a left or a right isoclinic rotation alone.{{Efn|name=black and white}}|name=black and white octahedra}} Each isoclinically displaced octahedron is also rotated itself. After a 360° isoclinic rotation each octahedron is back in the same position, but in a different orientation. In a 720° isoclinic rotation, its vertices are returned to their original [[Orientation entanglement|orientation]]. Four Clifford parallel great hexagons comprise a discrete fiber bundle covering all 24 vertices in a [[Hopf fibration]]. The 24-cell has four such [[#Great hexagons|discrete hexagonal fibrations]] <math>F_a, F_b, F_c, F_d</math>. Each great hexagon belongs to just one fibration, and the four fibrations are defined by disjoint sets of four great hexagons each.{{Sfn|Kim|Rote|2016|loc=§8.3 Properties of the Hopf Fibration|pp=14-16|ps=; Corollary 9. Every great circle belongs to a unique right [(and left)] Hopf bundle.}} Each fibration is the domain (container) of a unique left-right pair of isoclinic rotations (left and right Hopf fiber bundles).{{Efn|The choice of a partitioning of a regular 4-polytope into cell rings (a fibration) is arbitrary, because all of its cells are identical. No particular fibration is distinguished, ''unless'' the 4-polytope is rotating. Each fibration corresponds to a left-right pair of isoclinic rotations in a particular set of Clifford parallel invariant central planes of rotation. In the 24-cell, distinguishing a hexagonal fibration{{Efn|name=hexagonal fibrations}} means choosing a cell-disjoint set of four 6-cell rings that is the unique container of a left-right pair of isoclinic rotations in four Clifford parallel hexagonal invariant planes. The left and right rotations take place in chiral subspaces of that container,{{Sfn|Kim|Rote|2016|p=12|loc=§8 The Construction of Hopf Fibrations; 3}} but the fibration and the octahedral cell rings themselves are not chiral objects.{{Efn|name=6-cell ring is not chiral}}|name=fibrations are distinguished only by rotations}} Four cell-disjoint 6-cell rings also comprise each discrete fibration defined by four Clifford parallel great hexagons. Each 6-cell ring contains only 18 of the 24 vertices, and only 6 of the 16 great hexagons, which we see illustrated above running along the cell ring's edges: 3 spiraling clockwise and 3 counterclockwise. Those 6 hexagons running along the cell ring's edges are not among the set of four parallel hexagons which define the fibration. For example, one of the four 6-cell rings in fibration <math>F_a</math> contains 3 parallel hexagons running clockwise along the cell ring's edges from fibration <math>F_b</math>, and 3 parallel hexagons running counterclockwise along the cell ring's edges from fibration <math>F_c</math>, but that cell ring contains no great hexagons from fibration <math>F_a</math> or fibration <math>F_d</math>. The 24-cell contains 16 great hexagons, divided into four disjoint sets of four hexagons, each disjoint set uniquely defining a fibration. Each fibration is also a distinct set of four cell-disjoint 6-cell rings. The 24-cell has exactly 16 distinct 6-cell rings. Each 6-cell ring belongs to just one of the four fibrations.{{Efn|The dual polytope of the 24-cell is another 24-cell. It can be constructed by placing vertices at the 24 cell centers. Each 6-cell ring corresponds to a great hexagon in the dual 24-cell, so there are 16 distinct 6-cell rings, as there are 16 distinct great hexagons, each belonging to just one fibration.}} ==== Helical hexagrams and their isoclines ==== Another kind of geodesic fiber, the [[#Isoclinic rotations|helical hexagram isoclines]], can be found within a 6-cell ring of octahedra. Each of these geodesics runs through every ''second'' vertex of a skew [[hexagram]]<sub>2</sub>, which in the unit-radius, unit-edge-length 24-cell has six {{radic|3}} edges. The hexagram does not lie in a single central plane, but is composed of six linked {{radic|3}} chords from the six different hexagon great circles in the 6-cell ring. The isocline geodesic fiber is the path of an isoclinic rotation,{{Efn|name=isoclinic geodesic}} a helical rather than simply circular path around the 24-cell which links vertices two edge lengths apart and consequently must wrap twice around the 24-cell before completing its six-vertex loop.{{Efn|The chord-path of an isocline (the geodesic along which a vertex moves under isoclinic rotation) may be called the 4-polytope's '''Clifford polygon''', as it is the skew polygonal shape of the rotational circles traversed by the 4-polytope's vertices in its characteristic [[Clifford displacement]].{{Sfn|Tyrrell|Semple|1971|loc=Linear Systems of Clifford Parallels|pp=34-57}} The isocline is a helical Möbius double loop which reverses its chirality twice in the course of a full double circuit. The double loop is entirely contained within a single [[#Cell rings|cell ring]], where it follows chords connecting even (odd) vertices: typically opposite vertices of adjacent cells, two edge lengths apart.{{Efn|name=black and white}} Both "halves" of the double loop pass through each cell in the cell ring, but intersect only two even (odd) vertices in each even (odd) cell. Each pair of intersected vertices in an even (odd) cell lie opposite each other on the [[Möbius strip]], exactly one edge length apart. Thus each cell has both helices passing through it, which are Clifford parallels{{Efn|name=Clifford parallels}} of opposite chirality at each pair of parallel points. Globally these two helices are a single connected circle of ''both'' chiralities, with no net [[Torsion of a curve|torsion]]. An isocline acts as a left (or right) isocline when traversed by a left (or right) rotation (of different fibrations).{{Efn|name=one true circle}}|name=Clifford polygon}} Rather than a flat hexagon, it forms a [[skew polygon|skew]] hexagram out of two three-sided 360 degree half-loops: open triangles joined end-to-end to each other in a six-sided Möbius loop.{{Efn|name=double threaded}} Each 6-cell ring contains six such hexagram isoclines, three black and three white, that connect even and odd vertices respectively.{{Efn|Only one kind of 6-cell ring exists, not two different chiral kinds (right-handed and left-handed), because octahedra have opposing faces and form untwisted cell rings. In addition to two sets of three Clifford parallel{{Efn|name=Clifford parallels}} [[#Hexagons|great hexagons]], three black and three white [[#Isoclinic rotations|isoclinic hexagram geodesics]] run through the [[#6-cell rings|6-cell ring]].{{Efn|name=hexagonal fibrations}} Each of these chiral skew [[hexagram]]s lies on a different kind of circle called an ''isocline'',{{Efn|name=not all isoclines are circles}} a helical circle [[Winding number|winding]] through all four dimensions instead of lying in a single plane.{{Efn|name=isoclinic geodesic}} These helical great circles occur in Clifford parallel [[Hopf fibration|fiber bundles]] just as ordinary planar great circles do. In the 6-cell ring, black and white hexagrams pass through even and odd vertices respectively, and miss the vertices in between, so the isoclines are disjoint.{{Efn|name=black and white}}|name=6-cell ring is not chiral}} Each of the three black-white pairs of isoclines belongs to one of the three fibrations in which the 6-cell ring occurs. Each fibration's right (or left) rotation traverses two black isoclines and two white isoclines in parallel, rotating all 24 vertices.{{Efn|name=missing the nearest vertices}} Beginning at any vertex at one end of the column of six octahedra, we can follow an isoclinic path of {{radic|3}} chords of an isocline from octahedron to octahedron. In the 24-cell the {{radic|1}} edges are [[#Hexagons|great hexagon]] edges (and octahedron edges); in the column of six octahedra we see six great hexagons running along the octahedra's edges. The {{radic|3}} chords are great hexagon diagonals, joining great hexagon vertices two {{radic|1}} edges apart. We find them in the ring of six octahedra running from a vertex in one octahedron to a vertex in the next octahedron, passing through the face shared by the two octahedra (but not touching any of the face's 3 vertices). Each {{radic|3}} chord is a chord of just one great hexagon (an edge of a [[#Triangles|great triangle]] inscribed in that great hexagon), but successive {{radic|3}} chords belong to different great hexagons.{{Efn|name=360 degree geodesic path visiting 3 hexagonal planes}} At each vertex the isoclinic path of {{radic|3}} chords bends 60 degrees in two central planes{{Efn|Two central planes in which the path bends 60° at the vertex are (a) the great hexagon plane that the chord ''before'' the vertex belongs to, and (b) the great hexagon plane that the chord ''after'' the vertex belongs to. Plane (b) contains the 120° isocline chord joining the original vertex to a vertex in great hexagon plane (c), Clifford parallel to (a); the vertex moves over this chord to this next vertex. The angle of inclination between the Clifford parallel (isoclinic) great hexagon planes (a) and (c) is also 60°. In this 60° interval of the isoclinic rotation, great hexagon plane (a) rotates 60° within itself ''and'' tilts 60° in an orthogonal plane (not plane (b)) to become great hexagon plane (c). The three great hexagon planes (a), (b) and (c) are not orthogonal (they are inclined at 60° to each other), but (a) and (b) are two central hexagons in the same cuboctahedron, and (b) and (c) likewise in an orthogonal cuboctahedron.{{Efn|name=cuboctahedral hexagons}}}} at once: 60 degrees around the great hexagon that the chord before the vertex belongs to, and 60 degrees into the plane of a different great hexagon entirely, that the chord after the vertex belongs to.{{Efn|At each vertex there is only one adjacent great hexagon plane that the isocline can bend 60 degrees into: the isoclinic path is ''deterministic'' in the sense that it is linear, not branching, because each vertex in the cell ring is a place where just two of the six great hexagons contained in the cell ring cross. If each great hexagon is given edges and chords of a particular color (as in the 6-cell ring illustration), we can name each great hexagon by its color, and each kind of vertex by a hyphenated two-color name. The cell ring contains 18 vertices named by the 9 unique two-color combinations; each vertex and its antipodal vertex have the same two colors in their name, since when two great hexagons intersect they do so at antipodal vertices. Each isoclinic skew hexagram{{Efn|Each half of a skew hexagram is an open triangle of three {{radic|3}} chords, the two open ends of which are one {{radic|1}} edge length apart. The two halves, like the whole isocline, have no inherent chirality but the same parity-color (black or white). The halves are the two opposite "edges" of a [[Möbius strip]] that is {{radic|1}} wide; it actually has only one edge, which is a single continuous circle with 6 chords.|name=skew hexagram}} contains one {{radic|3}} chord of each color, and visits 6 of the 9 different color-pairs of vertex.{{Efn|Each vertex of the 6-cell ring is intersected by two skew hexagrams of the same parity (black or white) belonging to different fibrations.{{Efn|name=6-cell ring is not chiral}}|name=hexagrams hitting vertex of 6-cell ring}} Each 6-cell ring contains six such isoclinic skew hexagrams, three black and three white.{{Efn|name=hexagrams missing vertex of 6-cell ring}}|name=Möbius double loop hexagram}} Thus the path follows one great hexagon from each octahedron to the next, but switches to another of the six great hexagons in the next link of the hexagram<sub>2</sub> path. Followed along the column of six octahedra (and "around the end" where the column is bent into a ring) the path may at first appear to be zig-zagging between three adjacent parallel hexagonal central planes (like a [[Petrie polygon]]), but it is not: any isoclinic path we can pick out always zig-zags between ''two sets'' of three adjacent parallel hexagonal central planes, intersecting only every even (or odd) vertex and never changing its inherent even/odd parity, as it visits all six of the great hexagons in the 6-cell ring in rotation.{{Efn|The 24-cell's [[Petrie polygon#The Petrie polygon of regular polychora (4-polytopes)|Petrie polygon]] is a skew [[Skew polygon#Regular skew polygons in four dimensions|dodecagon]] {12} and also (orthogonally) a skew [[dodecagram]] {12/5} which zig-zags 90° left and right like the edges dividing the black and white squares on the [[chessboard]].{{Sfn|Coxeter|1973|pp=292-293|loc=Table I(ii); 24-cell ''h<sub>1</sub> is {12}, h<sub>2</sub> is {12/5}''}} In contrast, the skew hexagram<sub>2</sub> isocline does not zig-zag, and stays on one side or the other of the dividing line between black and white, like the [[Bishop (chess)|bishop]]s' paths along the diagonals of either the black or white squares of the chessboard.{{Efn|name=missing the nearest vertices}} The Petrie dodecagon is a circular helix of {{radic|1}} edges that zig-zag 90° left and right along 12 edges of 6 different octahedra (with 3 consecutive edges in each octahedron) in a 360° rotation. In contrast, the isoclinic hexagram<sub>2</sub> has {{radic|3}} edges which all bend either left or right at every ''second'' vertex along a geodesic spiral of ''both'' chiralities (left and right){{Efn|name=Clifford polygon}} but only one color (black or white),{{Efn|name=black and white}} visiting one vertex of each of those same 6 octahedra in a 720° rotation.|name=Petrie dodecagram and Clifford hexagram}} When it has traversed one chord from each of the six great hexagons, after 720 degrees of isoclinic rotation (either left or right), it closes its skew hexagram and begins to repeat itself, circling again through the black (or white) vertices and cells. At each vertex, there are four great hexagons{{Efn|Each pair of adjacent edges of a great hexagon has just one isocline curving alongside it,{{Efn|Each vertex of a 6-cell ring is missed by the two halves of the same Möbius double loop hexagram,{{Efn|name=Möbius double loop hexagram}} which curve past it on either side.|name=hexagrams missing vertex of 6-cell ring}} missing the vertex between the two edges (but not the way the {{radic|3}} edge of the great triangle inscribed in the great hexagon misses the vertex,{{Efn|The {{radic|3}} chord passes through the mid-edge of one of the 24-cell's {{radic|1}} radii. Since the 24-cell can be constructed, with its long radii, from {{radic|1}} triangles which meet at its center,{{Efn|name=radially equilateral}} this is a mid-edge of one of the six {{radic|1}} triangles in a great hexagon, as seen in the [[#Hypercubic chords|chord diagram]].|name=root 3 chord hits a mid-radius}} because the isocline is an arc on the surface not a chord). If we number the vertices around the hexagon 0-5, the hexagon has three pairs of adjacent edges connecting even vertices (one inscribed great triangle), and three pairs connecting odd vertices (the other inscribed great triangle). Even and odd pairs of edges have the arc of a black and a white isocline respectively curving alongside.{{Efn|name=black and white}} The three black and three white isoclines belong to the same 6-cell ring of the same fibration.{{Efn|name=Möbius double loop hexagram}}|name=isoclines at hexagons}} and four hexagram isoclines (all black or all white) that cross at the vertex.{{Efn|Each hexagram isocline hits only one end of an axis, unlike a great circle which hits both ends. Clifford parallel pairs of black and white isoclines from the same left-right pair of isoclinic rotations (the same fibration) do not intersect, but they hit opposite (antipodal) vertices of ''one'' of the 24-cell's 12 axes.|name=hexagram isoclines at an axis}} Four hexagram isoclines (two black and two white) comprise a unique (left or right) fiber bundle of isoclines covering all 24 vertices in each distinct (left or right) isoclinic rotation. Each fibration has a unique left and right isoclinic rotation, and corresponding unique left and right fiber bundles of isoclines.{{Efn|The isoclines themselves are not left or right, only the bundles are. Each isocline is left ''and'' right.{{Efn|name=Clifford polygon}}}} There are 16 distinct hexagram isoclines in the 24-cell (8 black and 8 white).{{Efn|The 12 black-white pairs of hexagram isoclines in each fibration{{Efn|name=hexagram isoclines at an axis}} and the 16 distinct hexagram isoclines in the 24-cell form a [[Reye configuration]] 12<sub>4</sub>16<sub>3</sub>, just the way the 24-cell's 12 axes and [[#Hexagons|16 hexagons]] do. Each of the 12 black-white pairs occurs in one cell ring of each fibration of 4 hexagram isoclines, and each cell ring contains 3 black-white pairs of the 16 hexagram isoclines.|name=a right (left) isoclinic rotation is a Reye configuration}} Each isocline is a skew ''Clifford polygon'' of no inherent chirality, but acts as a left (or right) isocline when traversed by a left (or right) rotation in different fibrations.{{Efn|name=Clifford polygon}} ==== Helical octagrams and their isoclines ==== The 24-cell contains 18 helical [[octagram]] isoclines (9 black and 9 white). Three pairs of octagram edge-helices are found in each of the three inscribed 16-cells, described elsewhere as the [[16-cell#Helical construction|helical construction of the 16-cell]]. In summary, each 16-cell can be decomposed (three different ways) into a left-right pair of 8-cell rings of {{radic|2}}-edged tetrahedral cells. Each 8-cell ring twists either left or right around an axial octagram helix of eight chords. In each 16-cell there are exactly 6 distinct helices, identical octagrams which each circle through all eight vertices. Each acts as either a left helix or a right helix or a Petrie polygon in each of the six distinct isoclinic rotations (three left and three right), and has no inherent chirality except in respect to a particular rotation. Adjacent vertices on the octagram isoclines are {{radic|2}} = 90° apart, so the circumference of the isocline is 4𝝅. An ''isoclinic'' rotation by 90° in great square invariant planes takes each vertex to its antipodal vertex, four vertices away in either direction along the isocline, and {{radic|4}} = 180° distant across the diameter of the isocline. Each of the 3 fibrations of the 24-cell's 18 great squares corresponds to a distinct left (and right) isoclinic rotation in great square invariant planes. Each 60° step of the rotation takes 6 disjoint great squares (2 from each 16-cell) to great squares in a neighboring 16-cell, on [[16-cell#Helical construction|8-chord helical isoclines characteristic of the 16-cell]].{{Efn|As [[16-cell#Helical construction|in the 16-cell, the isocline is an octagram]] which intersects only 8 vertices, even though the 24-cell has more vertices closer together than the 16-cell. The isocline curve misses the additional vertices in between. As in the 16-cell, the first vertex it intersects is {{radic|2}} away. The 24-cell employs more octagram isoclines (3 in parallel in each rotation) than the 16-cell does (1 in each rotation). The 3 helical isoclines are Clifford parallel;{{Efn|name=Clifford parallels}} they spiral around each other in a triple helix, with the disjoint helices' corresponding vertex pairs joined by {{radic|1}} {{=}} 60° chords. The triple helix of 3 isoclines contains 24 disjoint {{radic|2}} edges (6 disjoint great squares) and 24 vertices, and constitutes a discrete fibration of the 24-cell, just as the 4-cell ring does.|name=octagram isoclines}} In the 24-cell, these 18 helical octagram isoclines can be found within the six orthogonal [[#4-cell rings|4-cell rings]] of octahedra. Each 4-cell ring has cells bonded vertex-to-vertex around a great square axis, and we find antipodal vertices at opposite vertices of the great square. A {{radic|4}} chord (the diameter of the great square and of the isocline) connects them. [[#Boundary cells|Boundary cells]] describes how the {{radic|2}} axes of the 24-cell's octahedral cells are the edges of the 16-cell's tetrahedral cells, each tetrahedron is inscribed in a (tesseract) cube, and each octahedron is inscribed in a pair of cubes (from different tesseracts), bridging them.{{Efn|name=octahedral diameters}} The vertex-bonded octahedra of the 4-cell ring also lie in different tesseracts.{{Efn|Two tesseracts share only vertices, not any edges, faces, cubes (with inscribed tetrahedra), or octahedra (whose central square planes are square faces of cubes). An octahedron that touches another octahedron at a vertex (but not at an edge or a face) is touching an octahedron in another tesseract, and a pair of adjacent cubes in the other tesseract whose common square face the octahedron spans, and a tetrahedron inscribed in each of those cubes.|name=vertex-bonded octahedra}} The isocline's four {{radic|4}} diameter chords form an [[Octagram#Star polygon compounds|octagram<sub>8{4}=4{2}</sub>]] with {{radic|4}} edges that each run from the vertex of one cube and octahedron and tetrahedron, to the vertex of another cube and octahedron and tetrahedron (in a different tesseract), straight through the center of the 24-cell on one of the 12 {{radic|4}} axes. The octahedra in the 4-cell rings are vertex-bonded to more than two other octahedra, because three 4-cell rings (and their three axial great squares, which belong to different 16-cells) cross at 90° at each bonding vertex. At that vertex the octagram makes two right-angled turns at once: 90° around the great square, and 90° orthogonally into a different 4-cell ring entirely. The 180° four-edge arc joining two ends of each {{radic|4}} diameter chord of the octagram runs through the volumes and opposite vertices of two face-bonded {{radic|2}} tetrahedra (in the same 16-cell), which are also the opposite vertices of two vertex-bonded octahedra in different 4-cell rings (and different tesseracts). The [[octagram|720° octagram]] isocline runs through 8 vertices of the four-cell ring and through the volumes of 16 tetrahedra. At each vertex, there are three great squares and six octagram isoclines (three black-white pairs) that cross at the vertex.{{Efn|name=completely orthogonal Clifford parallels are special}} This is the characteristic rotation of the 16-cell, ''not'' the 24-cell's characteristic rotation, and it does not take whole 16-cells ''of the 24-cell'' to each other the way the [[#Helical hexagrams and their isoclines|24-cell's rotation in great hexagon planes]] does.{{Efn|The [[600-cell#Squares and 4𝝅 octagrams|600-cell's isoclinic rotation in great square planes]] takes whole 16-cells to other 16-cells in different 24-cells.}} {| class="wikitable" width=610 !colspan=5|Five ways of looking at a [[Skew polygon|skew]] [[24-gon#Related polygons|24-gram]] |- ![[16-cell#Rotations|Edge path]] ![[Petrie polygon]]s ![[600-cell#Squares and 4𝝅 octagrams|In a 600-cell]] ![[#Squares|Discrete fibration]] ![[16-cell#Helical construction|Diameter chords]] |- ![[16-cell#Helical construction|16-cells]]<sub>3{3/8}</sub> ![[Petrie polygon#The Petrie polygon of regular polychora (4-polytopes)|Dodecagons]]<sub>2{12}</sub> ![[24-gon#Related polygons|24-gram]]<sub>{24/5}</sub> ![[#Squares|Squares]]<sub>6{4}</sub> ![[24-gon#Related polygons|<sub>{24/12}={12/2}</sub>]] |- |align=center|[[File:Regular_star_figure_3(8,3).svg|120px]] |align=center|[[File:Regular_star_figure_2(12,1).svg|120px]] |align=center|[[File:Regular_star_polygon_24-5.svg|120px]] |align=center|[[File:Regular_star_figure_6(4,1).svg|120px]] |align=center|[[File:Regular_star_figure_12(2,1).svg|120px]] |- |The 24-cell's three inscribed Clifford parallel 16-cells revealed as disjoint 8-point 4-polytopes with {{radic|2}} edges.{{Efn|name=octagram isoclines}} |2 [[skew polygon]]s of 12 {{radic|1}} edges each. The 24-cell can be decomposed into 2 disjoint zig-zag [[dodecagon]]s (4 different ways).{{Sfn|Coxeter|1973|pp=292-293|loc=Table I(ii); 24-cell Petrie polygon ''h<sub>1</sub>'' is {12} }} |In [[600-cell#Hexagons|compounds of 5 24-cells]], isoclines with [[600-cell#Golden chords|golden chords]] of length <big>φ</big> {{=}} {{radic|2.𝚽}} connect all 24-cells in [[600-cell#Squares and 4𝝅 octagrams|24-chord circuits]].{{Sfn|Coxeter|1973|pp=292-293|loc=Table I(ii); 24-cell Petrie polygon orthogonal ''h<sub>2</sub>'' is [[Dodecagon#Related figures|{12/5}]], half of [[24-gon#Related polygons|{24/5}]] as each Petrie polygon is half the 24-cell}} |Their isoclinic rotation takes 6 Clifford parallel (disjoint) great squares with {{radic|2}} edges to each other. |Two vertices four {{radic|2}} chords apart on the circular isocline are antipodal vertices joined by a {{radic|4}} axis. |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)