Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related sequences== The arithmetic mean of the first and the second Bernoulli numbers are the associate Bernoulli numbers: {{math|1=''B''<sub>0</sub> = 1}}, {{math|1=''B''<sub>1</sub> = 0}}, {{math|1=''B''<sub>2</sub> = {{sfrac|1|6}}}}, {{math|1=''B''<sub>3</sub> = 0}}, {{math|1=''B''<sub>4</sub> = β{{sfrac|1|30}}}}, {{OEIS2C|id=A176327}} / {{OEIS2C|id=A027642}}. Via the second row of its inverse AkiyamaβTanigawa transform {{OEIS2C|id=A177427}}, they lead to Balmer series {{OEIS2C|id=A061037}} / {{OEIS2C|id=A061038}}. The AkiyamaβTanigawa algorithm applied to {{OEIS2C|id=A060819}} ({{math|''n'' + 4}}) / {{OEIS2C|id=A145979}} ({{mvar|n}}) leads to the Bernoulli numbers {{OEIS2C|id=A027641}} / {{OEIS2C|id=A027642}}, {{OEIS2C|id=A164555}} / {{OEIS2C|id=A027642}}, or {{OEIS2C|id=A176327}} {{OEIS2C|id=A176289}} without {{math|''B''<sub>1</sub>}}, named intrinsic Bernoulli numbers {{math|''B''<sub>''i''</sub>(''n'')}}. :{| style="text-align:center; padding-left; padding-right: 2em;" |- |1||{{sfrac|5|6}}||{{sfrac|3|4}}||{{sfrac|7|10}}||{{sfrac|2|3}} |- |{{sfrac|1|6}}||{{sfrac|1|6}}||{{sfrac|3|20}}||{{sfrac|2|15}}||{{sfrac|5|42}} |- |0||{{sfrac|1|30}}||{{sfrac|1|20}}||{{sfrac|2|35}}||{{sfrac|5|84}} |- |β{{sfrac|1|30}}||β{{sfrac|1|30}}||β{{sfrac|3|140}}||β{{sfrac|1|105}}||0 |- |0||β{{sfrac|1|42}}||β{{sfrac|1|28}}||β{{sfrac|4|105}}||β{{sfrac|1|28}} |} Hence another link between the intrinsic Bernoulli numbers and the Balmer series via {{OEIS2C|id=A145979}} ({{math|''n''}}). {{OEIS2C|id=A145979}} ({{math|''n'' β 2}}) = 0, 2, 1, 6,... is a permutation of the non-negative numbers. The terms of the first row are f(n) = {{math|{{sfrac|1|2}} + {{sfrac|1|''n'' + 2}}}}. 2, f(n) is an autosequence of the second kind. 3/2, f(n) leads by its inverse binomial transform to 3/2 β1/2 1/3 β1/4 1/5 ... = 1/2 + log 2. Consider g(n) = 1/2 β 1 / (n+2) = 0, 1/6, 1/4, 3/10, 1/3. The Akiyama-Tanagiwa transforms gives: :{| style="text-align:center; padding-left; padding-right:2em;" |- |0||{{sfrac|1|6}}||{{sfrac|1|4}}||{{sfrac|3|10}}||{{sfrac|1|3}}||{{sfrac|5|14}}||... |- |β{{sfrac|1|6}}||β{{sfrac|1|6}}||β{{sfrac|3|20}}||β{{sfrac|2|15}}||β{{sfrac|5|42}}||β{{sfrac|3|28}}||... |- |0||β{{sfrac|1|30}}||β{{sfrac|1|20}}||β{{sfrac|2|35}}||β{{sfrac|5|84}}||β{{sfrac|5|84}}||... |- |{{sfrac|1|30}}||{{sfrac|1|30}}||{{sfrac|3|140}}||{{sfrac|1|105}}||0||β{{sfrac|1|140}}||... |} 0, g(n), is an autosequence of the second kind. Euler {{OEIS2C|id=A198631}} ({{math|''n''}}) / {{OEIS2C|id=A006519}} ({{math|''n'' + 1}}) without the second term ({{sfrac|1|2}}) are the fractional intrinsic Euler numbers {{math|''E''<sub>''i''</sub>(''n'') {{=}} 1, 0, β{{sfrac|1|4}}, 0, {{sfrac|1|2}}, 0, β{{sfrac|17|8}}, 0, ...}} The corresponding Akiyama transform is: :{| style="text-align:center; padding-left; padding-right: 2em;" |- |1||1||{{sfrac|7|8}}||{{sfrac|3|4}}||{{sfrac|21|32}} |- |0||{{sfrac|1|4}}||{{sfrac|3|8}}||{{sfrac|3|8}}||{{sfrac|5|16}} |- |β{{sfrac|1|4}}||β{{sfrac|1|4}}||0||{{sfrac|1|4}}||{{sfrac|25|64}} |- |0||β{{sfrac|1|2}}||β{{sfrac|3|4}}||β{{sfrac|9|16}}||β{{sfrac|5|32}} |- |{{sfrac|1|2}}||{{sfrac|1|2}}||β{{sfrac|9|16}}||β{{sfrac|13|8}}||β{{sfrac|125|64}} |} The first line is {{math|''Eu''(''n'')}}. {{math|''Eu''(''n'')}} preceded by a zero is an autosequence of the first kind. It is linked to the Oresme numbers. The numerators of the second line are {{OEIS2C|id=A069834}} preceded by 0. The difference table is: :{| style="text-align:center; padding-left; padding-right: 2em;" |- |0||1||1||{{sfrac|7|8}}||{{sfrac|3|4}}||{{sfrac|21|32}}||{{sfrac|19|32}} |- |1||0||β{{sfrac|1|8}}||β{{sfrac|1|8}}||β{{sfrac|3|32}}||β{{sfrac|1|16}}||β{{sfrac|5|128}} |- |β1||β{{sfrac|1|8}}||0||{{sfrac|1|32}}||{{sfrac|1|32}}||{{sfrac|3|128}}||{{sfrac|1|64}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)