Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Moments of linearly transformed, product and inverted random variables===== One can also show the following expectations for a transformed random variable,<ref name=JKB/> where the random variable ''X'' is Beta-distributed with parameters ''Ξ±'' and ''Ξ²'': ''X'' ~ Beta(''Ξ±'', ''Ξ²''). The expected value of the variable 1 β ''X'' is the mirror-symmetry of the expected value based on ''X'': :<math>\begin{align} \operatorname{E}[1-X] &= \frac{\beta}{\alpha + \beta} \\ \operatorname{E}[X(1-X)] &= \operatorname{E}[(1-X)X] = \frac{\alpha\beta}{(\alpha+\beta)(\alpha+\beta+1)} \end{align}</math> Due to the mirror-symmetry of the probability density function of the beta distribution, the variances based on variables ''X'' and 1 β ''X'' are identical, and the covariance on ''X''(1 β ''X'' is the negative of the variance: :<math>\operatorname{var}[(1-X)]=\operatorname{var}[X] = -\operatorname{cov}[X,(1-X)]= \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}</math> These are the expected values for inverted variables, (these are related to the harmonic means, see {{section link||Harmonic mean}}): :<math>\begin{align} \operatorname{E} \left [\frac{1}{X} \right ] &= \frac{\alpha+\beta-1 }{\alpha -1 } && \text{ if } \alpha > 1\\ \operatorname{E}\left [\frac{1}{1-X} \right ] &=\frac{\alpha+\beta-1 }{\beta-1 } && \text{ if } \beta > 1 \end{align}</math> The following transformation by dividing the variable ''X'' by its mirror-image ''X''/(1 β ''X'') results in the expected value of the "inverted beta distribution" or [[beta prime distribution]] (also known as beta distribution of the second kind or [[Pearson distribution|Pearson's Type VI]]):<ref name=JKB/> :<math> \begin{align} \operatorname{E}\left[\frac{X}{1-X}\right] &=\frac{\alpha}{\beta - 1 } && \text{ if }\beta > 1\\ \operatorname{E}\left[\frac{1-X}{X}\right] &=\frac{\beta}{\alpha- 1 } && \text{ if }\alpha > 1 \end{align} </math> Variances of these transformed variables can be obtained by integration, as the expected values of the second moments centered on the corresponding variables: :<math>\operatorname{var} \left[\frac{1}{X} \right] =\operatorname{E}\left[\left(\frac{1}{X} - \operatorname{E}\left[\frac{1}{X} \right ] \right )^2\right]= \operatorname{var}\left [\frac{1-X}{X} \right ] =\operatorname{E} \left [\left (\frac{1-X}{X} - \operatorname{E}\left [\frac{1-X}{X} \right ] \right )^2 \right ]= \frac{\beta (\alpha+\beta-1)}{(\alpha -2)(\alpha-1)^2 } \text{ if }\alpha > 2</math> The following variance of the variable ''X'' divided by its mirror-image (''X''/(1β''X'') results in the variance of the "inverted beta distribution" or [[beta prime distribution]] (also known as beta distribution of the second kind or [[Pearson distribution|Pearson's Type VI]]):<ref name=JKB/> :<math>\operatorname{var} \left [\frac{1}{1-X} \right ] =\operatorname{E} \left [\left(\frac{1}{1-X} - \operatorname{E} \left [\frac{1}{1-X} \right ] \right)^2 \right ]=\operatorname{var} \left [\frac{X}{1-X} \right ] = \operatorname{E} \left [\left (\frac{X}{1-X} - \operatorname{E} \left [\frac{X}{1-X} \right ] \right )^2 \right ]= \frac{\alpha(\alpha+\beta-1)}{(\beta-2)(\beta-1)^2 } \text{ if }\beta > 2</math> The covariances are: :<math>\operatorname{cov}\left [\frac{1}{X},\frac{1}{1-X} \right ] = \operatorname{cov}\left[\frac{1-X}{X},\frac{X}{1-X} \right] =\operatorname{cov}\left[\frac{1}{X},\frac{X}{1-X}\right ] = \operatorname{cov}\left[\frac{1-X}{X},\frac{1}{1-X} \right] =\frac{\alpha+\beta-1}{(\alpha-1)(\beta-1) } \text{ if } \alpha, \beta > 1</math> These expectations and variances appear in the four-parameter Fisher information matrix ({{section link||Fisher information}}.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)