Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generators of dynamical symmetry transformations === Consider the transformation where the change of coordinates also depends on the generalized velocities. <math display="block">\begin{align} q^r\to q^r+\delta q^r\\ \delta q^r=\epsilon\phi^r(q,\dot{q},t)\\ \end{align}</math> If the above is a dynamical symmetry, then the lagrangian changes by: <math display="block">\delta L=\epsilon\frac d {dt}F(q,\dot q,t)</math> and the new Lagrangian is said to be dynamically equivalent to the old Lagrangian as it ensures the resultant equations of motion being the same. The change in generalized velocity and momentum term can be derived as: <math display="block">\begin{align} p=\frac{\partial L}{\partial \dot q}, \quad& \dot q=\frac {dq}{dt}\\ \delta p_r=\frac{\partial^2L}{\partial q^s\partial\dot q^r}\delta q^s+\frac{\partial^2 L}{\partial \dot q^s\partial \dot q^r}\delta \dot q^s,\quad&\delta \dot q^r=\epsilon \frac{\partial \phi^r}{\partial q^s} \dot q^s+\epsilon \frac{\partial \phi^r}{\partial \dot q^s}\ddot q^s+\epsilon\frac{\partial\phi^r}{\partial t} \\ \end{align}</math> ==== Generator of transformation ==== Using the change in Lagrangian property of a dynamical symmetry: <math display="block">\frac d{dt}F=\frac{\partial F}{\partial q^r}\dot q^r+\frac{\partial F}{\partial \dot q^r}\ddot q^r+\frac{\partial F}{\partial t}=\frac{\delta L}{\epsilon}=\left(\frac{\partial L}{\partial q^r}\phi^r+\frac{\partial L}{\partial \dot q^r}\frac{\partial \phi^r}{\partial t}\right)+p_s\frac{\partial \phi^s}{\partial q^r}\dot q^r+p_s\frac{\partial \phi^s}{\partial \dot q^r}\ddot q^r</math> Since the <math>\ddot q</math> terms appear only once in either side, it's coefficients must be equal for this to be true, giving the relation: <math display="inline">p_s\frac{\partial \phi^s}{\partial \dot q^r}=\frac{\partial F}{\partial \dot q^r} </math> using which, it can be shown that <math display="block"> \{q^r,\epsilon (p_s\phi^s-F)\}=\delta q^r,\quad \{p_r,\epsilon(p_s\phi^s-F)\}=\delta p_r+\epsilon\left(\frac{\partial L}{\partial q^s}-\frac{d}{dt}\frac{\partial L}{\partial \dot q^s}\right)\frac{\partial \phi^s}{\partial \dot q^r}</math> Hence, the term <math>p\phi-F</math> generates the canonical dynamical symmetry transformation if either the Euler Lagrange relation gives zero, or if <math>\frac{\partial \phi_s}{\partial \dot q^r}=0\,\forall s,r</math> which is a infinitesimal point transformation. Note that in the point transformation condition, the quantity generates the transformation regardless of if the Euler Lagrange equations are satisfied and since they do not depend on the dynamics of the problem are said to be a purely kinematic relation.<ref>{{Cite journal |last=Mallesh |first=K. S. |last2=Chaturvedi |first2=Subhash |last3=Balakrishnan |first3=V. |last4=Simon |first4=R. |last5=Mukunda |first5=N. |date=2011-02-01 |title=Symmetries and conservation laws in classical and quantum mechanics |url=https://link.springer.com/article/10.1007/s12045-011-0020-5 |journal=Resonance |language=en |volume=16 |issue=2 |pages=129β151 |doi=10.1007/s12045-011-0020-5 |issn=0973-712X|url-access=subscription }}</ref> {| class="toccolours collapsible collapsed" width="80%" style="text-align:left" !Proof |- | Firstly, the change in momentum can be expressed in a more useful form as follows:<math display="block">\delta p_r=\frac{\partial^2L}{\partial q^s\partial\dot q^r}\delta q^s+\frac{\partial^2 L}{\partial \dot q^s\partial \dot q^r}\delta \dot q^s=\frac{\partial}{\partial \dot q^r}\left(\frac{\partial L}{\partial q^s}\delta q^s+\frac{\partial L}{\partial \dot q^s}\delta \dot q^s\right)-\frac{\partial L}{\partial q^s} \frac{\partial}{\partial \dot q^r}(\delta q^s)-\frac{\partial L}{\partial \dot q^s} \frac{\partial}{\partial \dot q^r}(\delta\dot q^s)=\frac{\partial}{\partial \dot q^r}(\delta L)-p_s\frac{\partial}{\partial \dot q^r}(\delta \dot q^s)-\frac{\partial L}{\partial q^s}\frac{\partial}{\partial \dot q^r}(\delta q^s)</math> Simplifying the required poisson brackets, <math> \begin{align} \{q^r,\epsilon (p_s\phi^s-F)\}=\epsilon \left(\phi_r+\frac{\partial \dot q^m}{\partial p_r}\cancelto{=0}{\left(p_s\frac{\partial \phi^s}{\partial \dot q^m}-\frac{\partial F}{\partial \dot q^m}\right)}\right)&=\delta q^r\\ \{p_r,\epsilon(p_s\phi^s-F)\}=\epsilon\left(-p_s\frac{\partial \phi^s}{\partial q^r}+\frac{\partial F}{\partial q^r}+\cancelto{=0}{\left(\frac{\partial F}{\partial \dot q^m}-p_s\frac{\partial \phi^s}{\partial \dot q^m}\right)}\left(\frac{\partial \dot q^m}{\partial q^r}\right)_{q,p,t}\right) &=\epsilon\left(-p_s\frac{\partial \phi^s}{\partial q^r}+\frac{\partial F}{\partial q^r}\right)\\ \end{align} </math> As a preliminary result, for any function of <math>(q,\dot q,t)</math>, <math> \frac{\partial}{\partial \dot q^r}\frac{d}{dt}-\frac{d}{dt}\frac{\partial}{\partial \dot q^r}=\frac{\partial}{\partial q^r}+\frac{\partial \ddot q^s}{\partial \dot q^r}\frac{\partial}{\partial \dot q^s}</math> which can be used to calculate the quantity: <math> \frac{\partial}{\partial \dot q^r}\left(\frac {dF}{dt}\right)-p_s\left(\frac{\partial}{\partial \dot q^r}\left(\frac {d}{dt}\phi^s\right)\right)-\dot p_s\frac{\partial}{\partial \dot q^r}(\phi^s)=\frac{d}{dt}\cancel{\left(\frac{\partial}{\partial \dot q^r}F-p_s\frac{\partial}{\partial \dot q^r}\phi^s\right)}+\frac{\partial \ddot q^s}{\partial \dot q^r}\cancel{\left(\frac{\partial}{\partial \dot q^s}F-p_m\frac{\partial}{\partial \dot q^s}\phi^m\right)}-p_s\frac{\partial \phi^s}{\partial q^r}+\frac{\partial F}{\partial q^r}=\{p_r,(p\phi-F)\}</math> This relation can be restated and combined with the formula for <math>\delta p_r</math>to give the required relation for momentum. <math>\{ p_r,\epsilon(p_s\phi^s-F)\}=\frac{\partial}{\partial \dot q^r}(\delta L)-p_s\frac{\partial}{\partial \dot q^r}(\delta \dot q^s) - \dot p_s \frac{\partial}{\partial \dot q^r}(\delta q^s)=\delta p_r+\epsilon\left(\frac{\partial L}{\partial q^s}-\frac{d}{dt}\frac{\partial L}{\partial \dot q^s}\right)\frac{\partial \phi^s}{\partial \dot q^r} </math> |} ==== Noether Invariant ==== Using Euler Lagrange relation for the provided Lagrangian, the invariants of motion can be derived as:<math display="block">\delta L-\epsilon\frac d {dt}F(q,\dot q,t)= \epsilon\phi\cancelto{=0}{\left(\frac{\partial}{\partial q}-\frac{d}{dt}\frac{\partial}{\partial \dot q}\right)L}+\epsilon\frac{d}{dt}\left(\phi\frac{\partial}{\partial \dot q}L- F\right)=\epsilon\frac{d}{dt}\left(\phi\frac{\partial}{\partial \dot q}L- F\right)=0</math> Hence <math>\left(\phi\frac{\partial}{\partial \dot q}L-F\right)=p\phi-F</math> is a constant of motion. Hence, the derived Noether invariant also generates the same symmetry transformation as shown previously.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)