Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Hermite functions as eigenfunctions of the Fourier transform=== The Hermite functions {{math|''Ο''<sub>''n''</sub>(''x'')}} are a set of [[eigenfunction]]s of the [[continuous Fourier transform]] {{mathcal|F}}. To see this, take the physicist's version of the generating function and multiply by {{math|''e''<sup>β{{sfrac|1|2}}''x''<sup>2</sup></sup>}}. This gives <math display="block">e^{-\frac12 x^2 + 2xt - t^2} = \sum_{n=0}^\infty e^{-\frac12 x^2} H_n(x) \frac{t^n}{n!}.</math> The Fourier transform of the left side is given by <math display="block">\begin{align} \mathcal{F} \left\{ e^{ -\frac12 x^2 + 2xt - t^2 } \right\}(k) &= \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^\infty e^{-ixk}e^{-\frac12 x^2 + 2xt - t^2}\, dx \\ &= e^{-\frac12 k^2 - 2kit + t^2 } \\ &= \sum_{n=0}^\infty e^{ -\frac12 k^2 } H_n(k) \frac{(-it)^n}{n!}. \end{align}</math> The Fourier transform of the right side is given by <math display="block">\mathcal{F} \left\{ \sum_{n=0}^\infty e^{-\frac12 x^2} H_n(x) \frac {t^n}{n!} \right\} = \sum_{n=0}^\infty \mathcal{F} \left \{ e^{-\frac12 x^2} H_n(x) \right\} \frac{t^n}{n!}.</math> Equating like powers of {{mvar|t}} in the transformed versions of the left and right sides finally yields <math display="block">\mathcal{F} \left\{ e^{-\frac12 x^2} H_n(x) \right\} = (-i)^n e^{-\frac12 k^2} H_n(k).</math> The Hermite functions {{math|''Ο<sub>n</sub>''(''x'')}} are thus an orthonormal basis of {{math|''L''<sup>2</sup>('''R''')}}, which ''diagonalizes the Fourier transform operator''.<ref>In this case, we used the unitary version of the Fourier transform, so the [[eigenvalue]]s are {{math|(β''i'')<sup>''n''</sup>}}. The ensuing resolution of the identity then serves to define powers, including fractional ones, of the Fourier transform, to wit a [[Fractional Fourier transform]] generalization, in effect a [[Mehler kernel]].</ref> In short, we have:<math display="block">\frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi_n(x) dx = (-i)^n \psi_n(k), \quad \frac{1}{\sqrt{2\pi}} \int e^{+ikx} \psi_n(k) dk = i^n \psi_n(x)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)