Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Continued fractions== Assuming real numbers <math>a,p</math> with <math>0<a<p</math> and the [[Nome (mathematics)|nome]] <math>q=e^{\pi i \tau}</math>, <math>\operatorname{Im}(\tau)>0</math> with [[Theta function|elliptic modulus]] <math display="inline">k(\tau)=\sqrt{1-k'(\tau)^2}=(\vartheta_{10}(0;\tau)/\vartheta_{00}(0;\tau))^2</math>. If <math>K[\tau]=K(k(\tau))</math>, where <math>K(x)=\pi/2\cdot {}_2F_1(1/2,1/2;1;x^2)</math> is the [[complete elliptic integral of the first kind]], then holds the following [[Continued fraction|continued fraction expansion]]<ref name="bagis-evaluations">N.Bagis.(2020)."Evaluations of series related to Jacobi elliptic functions". preprint https://www.researchgate.net/publication/331370071_Evaluations_of_Series_Related_to_Jacobi_Elliptic_Functions</ref> :<math> \begin{align} &\frac{\textrm{dn}\left((p/2-a)\tau K\left[\frac{p\tau}{2}\right];k\left(\frac{p\tau}{2}\right)\right)}{\sqrt{k'\left(\frac{p\tau}{2}\right)}} = \frac{\sum^\infty_{n=-\infty}q^{p/2 n^2+(p/2-a)n}}{\sum^\infty_{n=-\infty}(-1)^nq^{p/2 n^2+(p/2-a)n}}\\[4pt] ={}&-1+\frac{2}{1-{}} \, \frac{q^a+q^{p-a}}{1-q^p+{}} \, \frac{(q^a+q^{2p-a})(q^{a+p}+q^{p-a})}{1-q^{3p}+{}} \, \frac{q^p(q^a+q^{3p-a})(q^{a+2p}+q^{p-a})}{1-q^{5p}+{}} \, \frac{q^{2p}(q^a+q^{4p-a})(q^{a+3p}+q^{p-a})}{1-q^{7p}+{}}\cdots \end{align} </math> Known continued fractions involving <math>\textrm{sn}(t),\textrm{cn}(t)</math> and <math>\textrm{dn}(t)</math> with elliptic modulus <math>k</math> are For <math>z\in\Complex</math>, <math>|k|<1</math>:<ref name="wall-analytic-theory">H.S. Wall. (1948). "Analytic Theory of Continued Fractions", Van Nostrand, New York.</ref> pg. 374 :<math>\int^{\infty}_{0}\textrm{sn}(t)e^{-tz}\, \mathrm dt=\frac{1}{1^2(1+k^2)+z^2-{}} \, \frac{1\cdot 2^2\cdot 3k^2}{3^2(1+k^2)+z^2-{}} \, \frac{3\cdot 4^2\cdot 5k^2}{5^2(1+k^2)+z^2-{}}\cdots</math> For <math>z \in \Complex\setminus\{0\}</math>, <math>|k|<1</math>:<ref name="wall-analytic-theory"/> pg. 375 :<math>\int^{\infty}_{0}\textrm{sn}^2(t)e^{-t z}\,\mathrm dt=\frac{2z^{-1}}{2^2(1+k^2)+z^2-{}} \, \frac{2\cdot 3^2\cdot 4k^2}{4^2(1+k^2)+z^2-{}} \, \frac{4\cdot 5^2\cdot 6k^2}{6^2(1+k^2)+z^2-{}}\cdots</math> For <math>z\in\Complex\setminus\{0\}</math>, <math>|k|<1</math>:<ref name="perron">Perron, O. (1957). "Die Lehre von den Kettenbruchen", Band II, B.G. Teubner, Stuttgart.</ref> pg. 220 :<math>\int^\infty_0 \textrm{cn}(t)e^{-t z}\, \mathrm dt=\frac{1}{z+{}} \, \frac{1^2}{z+{}} \, \frac{2^2k^2}{z+{}}\, \frac{3^2}{z+{}} \, \frac{4^2k^2}{z+{}} \, \frac{5^2}{z+{}} \cdots</math> For <math>z\in\Complex\setminus\{0\}</math>, <math>|k|<1</math>:<ref name="wall-analytic-theory"/> pg. 374 :<math>\int^\infty_0\textrm{dn}(t)e^{-t z}\, \mathrm dt=\frac{1}{z+{}} \, \frac{1^2k^2}{z+{}} \, \frac{2^2}{z+{}} \, \frac{3^2k^2}{z+{}} \, \frac{4^2}{z+{}} \, \frac{5^2k^2}{z+{}} \cdots</math> For <math>z\in\Complex</math>, <math>|k|<1</math>:<ref name="wall-analytic-theory"/> pg. 375 :<math>\int^{\infty}_{0}\frac{\textrm{sn}(t)\textrm{cn}(t)}{\textrm{dn}(t)}e^{-tz}\, \mathrm dt=\frac{1}{2\cdot 1^2(2-k^2)+z^2-{}} \, \frac{1\cdot 2^2\cdot 3k^4}{2\cdot 3^2(2-k^2)+z^2-{}} \, \frac{3\cdot 4^2\cdot 5k^4}{2\cdot 5^2(2-k^2)+z^2-{}}\cdots</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)