Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Probability theory and statistics=== [[File:PDF-log normal distributions.svg|thumb|right|alt=Three asymmetric PDF curves|Three [[probability density function]]s (PDF) of random variables with log-normal distributions. The location parameter {{math|ΞΌ}}, which is zero for all three of the PDFs shown, is the mean of the logarithm of the random variable, not the mean of the variable itself.]] [[File:Benfords law illustrated by world's countries population.svg|Distribution of first digits (in %, red bars) in the [[List of countries by population|population of the 237 countries]] of the world. Black dots indicate the distribution predicted by Benford's law.|thumb|right|alt=A bar chart and a superimposed second chart. The two differ slightly, but both decrease in a similar fashion.]] Logarithms arise in [[probability theory]]: the [[law of large numbers]] dictates that, for a [[fair coin]], as the number of coin-tosses increases to infinity, the observed proportion of heads [[binomial distribution|approaches one-half]]. The fluctuations of this proportion about one-half are described by the [[law of the iterated logarithm]].<ref>{{Citation | last1=Breiman | first1=Leo | title=Probability | publisher=[[Society for Industrial and Applied Mathematics]] | location=Philadelphia | series=Classics in applied mathematics | isbn=978-0-89871-296-4 | year=1992}}, section 12.9</ref> Logarithms also occur in [[log-normal distribution]]s. When the logarithm of a [[random variable]] has a [[normal distribution]], the variable is said to have a log-normal distribution.<ref>{{Citation|last1=Aitchison|first1=J.|last2=Brown|first2=J.A.C.|title=The lognormal distribution|publisher=[[Cambridge University Press]]|isbn=978-0-521-04011-2 |oclc=301100935|year=1969}}</ref> Log-normal distributions are encountered in many fields, wherever a variable is formed as the product of many independent positive random variables, for example in the study of turbulence.<ref> {{Citation | title = An introduction to turbulent flow | author = Jean Mathieu and Julian Scott | publisher = Cambridge University Press | year = 2000 | isbn = 978-0-521-77538-0 | page = 50 | url = {{google books |plainurl=y |id=nVA53NEAx64C|page=50}} }}</ref> Logarithms are used for [[maximum-likelihood estimation]] of parametric [[statistical model]]s. For such a model, the [[likelihood function]] depends on at least one [[parametric model|parameter]] that must be estimated. A maximum of the likelihood function occurs at the same parameter-value as a maximum of the logarithm of the likelihood (the "''log likelihood''"), because the logarithm is an increasing function. The log-likelihood is easier to maximize, especially for the multiplied likelihoods for [[independence (probability)|independent]] random variables.<ref>{{Citation|last1=Rose|first1=Colin|last2=Smith|first2=Murray D.|title=Mathematical statistics with Mathematica|publisher=[[Springer-Verlag]]|location=Berlin, New York|series=Springer texts in statistics|isbn=978-0-387-95234-5|year=2002}}, section 11.3</ref> [[Benford's law]] describes the occurrence of digits in many [[data set]]s, such as heights of buildings. According to Benford's law, the probability that the first decimal-digit of an item in the data sample is {{Mvar|d}} (from 1 to 9) equals {{math|log<sub>10</sub> (''d'' + 1) β log<sub>10</sub> (''d'')}}, ''regardless'' of the unit of measurement.<ref>{{Citation|last1=Tabachnikov|first1=Serge|author-link1=Sergei Tabachnikov|title=Geometry and Billiards|publisher=[[American Mathematical Society]]|location=Providence, RI|isbn=978-0-8218-3919-5|year=2005|pages=36β40}}, section 2.1</ref> Thus, about 30% of the data can be expected to have 1 as first digit, 18% start with 2, etc. Auditors examine deviations from Benford's law to detect fraudulent accounting.<ref>{{citation |title=The Effective Use of Benford's Law in Detecting Fraud in Accounting Data |first1=Cindy |last1=Durtschi |first2=William |last2=Hillison |first3=Carl |last3=Pacini |url=http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf |volume=V |pages=17β34 |year=2004 |journal=Journal of Forensic Accounting |archive-url=https://web.archive.org/web/20170829062510/http://faculty.usfsp.edu/gkearns/Articles_Fraud/Benford%20Analysis%20Article.pdf |archive-date=29 August 2017 |access-date=28 May 2018}}</ref> The [[logarithm transformation]] is a type of [[data transformation (statistics)|data transformation]] used to bring the empirical distribution closer to the assumed one.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)