Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monte Carlo method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Simulation and optimization === {{Main|Stochastic optimization}} Another powerful and very popular application for random numbers in numerical simulation is in [[Optimization (mathematics)|numerical optimization]]. The problem is to minimize (or maximize) functions of some vector that often has many dimensions. Many problems can be phrased in this way: for example, a [[computer chess]] program could be seen as trying to find the set of, say, 10 moves that produces the best evaluation function at the end. In the [[traveling salesman problem]] the goal is to minimize distance traveled. There are also applications to engineering design, such as [[multidisciplinary design optimization]]. It has been applied with quasi-one-dimensional models to solve particle dynamics problems by efficiently exploring large configuration space. Reference<ref>Spall, J. C. (2003), ''Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control'', Wiley, Hoboken, NJ. http://www.jhuapl.edu/ISSO</ref> is a comprehensive review of many issues related to simulation and optimization. The [[traveling salesman problem]] is what is called a conventional optimization problem. That is, all the facts (distances between each destination point) needed to determine the optimal path to follow are known with certainty and the goal is to run through the possible travel choices to come up with the one with the lowest total distance. If instead of the goal being to minimize the total distance traveled to visit each desired destination but rather to minimize the total time needed to reach each destination, this goes beyond conventional optimization since travel time is inherently uncertain (traffic jams, time of day, etc.). As a result, to determine the optimal path a different simulation is required: optimization to first understand the range of potential times it could take to go from one point to another (represented by a probability distribution in this case rather than a specific distance) and then optimize the travel decisions to identify the best path to follow taking that uncertainty into account.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)