Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Wang sequence === The computation in the previous section generalizes in a straightforward way. Consider a [[fibration]] over a sphere: :<math>F \overset{i}\to E \overset{p}\to S^n</math> with ''n'' at least 2. There is the [[Serre spectral sequence]]: :<math>E^2_{p, q} = H_p(S^n; H_q(F)) \Rightarrow H_{p+q}(E)</math>; that is to say, <math>E^{\infty}_{p, q} = F_p H_{p+q}(E)/F_{p-1} H_{p+q}(E)</math> with some filtration <math>F_\bullet</math>. Since <math>H_p(S^n)</math> is nonzero only when ''p'' is zero or ''n'' and equal to '''Z''' in that case, we see <math>E^2_{p, q}</math> consists of only two lines <math>p = 0,n</math>, hence the <math>E^2</math>-page is given by :<math>\begin{matrix} & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\ \cdots & 0 & E^2_{0,2} & 0 & \cdots & 0 & E^2_{n,2} & 0 & \cdots \\ \cdots & 0 & E^2_{0,1} & 0 & \cdots & 0 & E^2_{n,1} & 0 & \cdots \\ \cdots & 0 & E^2_{0,0} & 0 & \cdots & 0 & E^2_{n,0} & 0 & \cdots \\ \end{matrix}</math> Moreover, since :<math>E^2_{p, q} = H_p(S^n;H_q(F)) = H_q(F)</math> for <math>p = 0,n</math> by the [[universal coefficient theorem]], the <math>E^2</math> page looks like :<math>\begin{matrix} & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \\ \cdots & 0 & H_2(F) & 0 & \cdots & 0 & H_2(F) & 0 & \cdots \\ \cdots & 0 & H_1(F) & 0 & \cdots & 0 & H_1(F) & 0 & \cdots \\ \cdots & 0 & H_0(F) & 0 & \cdots & 0 & H_0(F) & 0 & \cdots \\ \end{matrix}</math> Since the only non-zero differentials are on the <math>E^n</math>-page, given by :<math>d^n_{n,q}:E^n_{n,q} \to E^n_{0,q+n-1}</math> which is :<math>d^n_{n,q}:H_q(F) \to H_{q+n-1}(F)</math> the spectral sequence converges on <math>E^{n+1} = E^{\infty}</math>. By computing <math>E^{n+1}</math> we get an exact sequence :<math>0 \to E^{\infty}_{n, q-n} \to E^n_{n, q-n} \overset{d}\to E^n_{0, q-1} \to E^{\infty}_{0, q-1} \to 0.</math> and written out using the homology groups, this is :<math>0 \to E^{\infty}_{n, q-n} \to H_{q-n}(F) \overset{d}\to H_{q-1}(F) \to E^{\infty}_{0, q-1} \to 0.</math> To establish what the two <math>E^\infty</math>-terms are, write <math>H = H(E)</math>, and since <math>F_1 H_q/F_0 H_q = E^{\infty}_{1, q - 1} = 0</math>, etc., we have: <math>E^{\infty}_{n, q-n} = F_n H_q / F_0 H_q</math> and thus, since <math>F_n H_q = H_q</math>, :<math>0 \to E^{\infty}_{0, q} \to H_q \to E^{\infty}_{n, q - n} \to 0.</math> This is the exact sequence :<math>0 \to H_q(F) \to H_q(E) \to H_{q-n}(F)\to 0.</math> Putting all calculations together, one gets:<ref>{{harvnb|Weibel|1994|loc=Application 5.3.5.}}</ref> :<math>\dots \to H_q(F) \overset{i_*}\to H_q(E) \to H_{q-n}(F) \overset{d}\to H_{q-1}(F) \overset{i_*}\to H_{q-1}(E) \to H_{q-n -1}(F) \to \dots</math> (The [[Gysin sequence]] is obtained in a similar way.)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)