Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
15 puzzle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Group theory=== The transformations of the 15 puzzle form a [[groupoid]] (not a group, as not all moves can be composed);<ref>Jim Belk (2008) [https://cornellmath.wordpress.com/2008/01/27/puzzles-groups-and-groupoids/ Puzzles, Groups, and Groupoids], The Everything Seminar</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-1 The 15-puzzle groupoid (1)], Never Ending Books</ref><ref>[http://www.neverendingbooks.org/the-15-puzzle-groupoid-2 The 15-puzzle groupoid (2)], Never Ending Books</ref> this [[Group action (mathematics)#Generalizations|groupoid acts]] on configurations. Because the combinations of the 15 puzzle can be generated by [[Permutation#Definition|3-cycles]], it can be proved that the 15 puzzle can be represented by the [[alternating group]] <math>A_{15}</math>.<ref>{{cite web | access-date=26 December 2020 | first1=Robert | last1=Beeler | url=https://faculty.etsu.edu/beelerr/fifteen-supp.pdf | title=The Fifteen Puzzle: A Motivating Example for the Alternating Group | publisher=East Tennessee State University | website=faculty.etsu.edu/ | archive-date=7 January 2021 | archive-url=https://web.archive.org/web/20210107214840/https://faculty.etsu.edu/beelerr/fifteen-supp.pdf | url-status=dead }}</ref> In fact, any <math>2 k - 1</math> sliding puzzle with square tiles of equal size can be represented by <math>A_{2 k - 1}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)