Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
3-sphere
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Elementary properties=== The 3-dimensional surface volume of a 3-sphere of radius {{mvar|r}} is :<math>SV=2\pi^2 r^3 \,</math> while the 4-dimensional hypervolume (the content of the 4-dimensional region, or ball, bounded by the 3-sphere) is :<math>H=\frac{1}{2} \pi^2 r^4.</math> Every non-empty intersection of a 3-sphere with a three-dimensional [[hyperplane]] is a 2-sphere (unless the hyperplane is tangent to the 3-sphere, in which case the intersection is a single point). As a 3-sphere moves through a given three-dimensional hyperplane, the intersection starts out as a point, then becomes a growing 2-sphere that reaches its maximal size when the hyperplane cuts right through the "equator" of the 3-sphere. Then the 2-sphere shrinks again down to a single point as the 3-sphere leaves the hyperplane. In a given three-dimensional hyperplane, a 3-sphere can rotate about an "equatorial plane" (analogous to a 2-sphere rotating about a central axis), in which case it appears to be a 2-sphere whose size is constant.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)