Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
7
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Basic calculations=== {|class="wikitable" style="text-align: center; background: white" |- ! style="width:105px;"|[[Multiplication]] !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 !16 !17 !18 !19 !20 !21 !22 !23 !24 !25 !50 !100 !1000 |- |'''7 Γ ''x''''' |'''7''' |{{num|14}} |{{num|21}} |{{num|28}} |{{num|35}} |{{num|42}} |{{num|49}} |{{num|56}} |{{num|63}} |{{num|70}} |{{num|77}} |{{num|84}} |{{num|91}} |{{num|98}} |{{num|105}} |{{num|112}} |{{num|119}} |{{num|126}} |{{num|133}} |{{num|140}} |{{num|147}} |{{num|154}} |{{num|161}} |{{num|168}} |{{num|175}} |{{num|350}} |{{num|700}} |{{num|7000}} |} {|class="wikitable" style="text-align: center; background: white" |- ! style="width:105px;"|[[Division (mathematics)|Division]] !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 |- |'''7 Γ· ''x''''' |'''7''' |3.5 |2.{{overline|3}} |1.75 |1.4 |1.1{{overline|6}} |rowspan=2 |[[1]] |0.875 |0.{{overline|7}} |0.7 |0.{{overline|63}} |0.58{{overline|3}} |0.{{overline|538461}} |0.5 |0.4{{overline|6}} |- |'''''x'' Γ· 7''' |0.<span style="text-decoration:overline">142857</span> |0.<span style="text-decoration:overline">285714</span> |0.<span style="text-decoration:overline">428571</span> |0.<span style="text-decoration:overline">571428</span> |0.<span style="text-decoration:overline">714285</span> |0.<span style="text-decoration:overline">857142</span> |1.<span style="text-decoration:overline">142857</span> |1.<span style="text-decoration:overline">285714</span> |1.<span style="text-decoration:overline">428571</span> |1.<span style="text-decoration:overline">571428</span> |1.<span style="text-decoration:overline">714285</span> |1.<span style="text-decoration:overline">857142</span> |{{num|2}} |2.<span style="text-decoration:overline">142857</span> |} {|class="wikitable" style="text-align: center; background: white" |- ! style="width:105px;"|[[Exponentiation]] !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 |- |'''7<sup>''x''</sup>''' |'''7''' |{{num|49}} |{{num|343}} |2401 |16807 |117649 |823543 |5764801 |40353607 |282475249 |1977326743 |13841287201 |96889010407 |- |'''''x''<sup>7</sup>''' |[[1]] |{{num|128}} |2187 |16384 |78125 |279936 |823543 |2097152 |4782969 |{{num|10000000}} |19487171 |35831808 |62748517 |} ====Decimal calculations==== {{num|999,999}} divided by 7 is exactly {{num|142,857}}. Therefore, when a [[vulgar fraction]] with 7 in the [[denominator]] is converted to a [[decimal]] expansion, the result has the same six-[[numerical digit|digit]] repeating sequence after the decimal point, but the sequence can start with any of those six digits.<ref>Bryan Bunch, ''The Kingdom of Infinite Number''. New York: W. H. Freeman & Company (2000): 82</ref> In [[decimal]] representation, the [[Multiplicative inverse|reciprocal]] of 7 repeats six [[Numerical digit|digits]] (as 0.{{overline|142857}}),<ref>{{Cite book |last=Wells |first=D. |url=https://archive.org/details/penguindictionar0000well_f3y1/mode/2up |title=The Penguin Dictionary of Curious and Interesting Numbers |publisher=[[Penguin Books]] |year=1987 |isbn=0-14-008029-5 |location=London |pages=171β174 |oclc=39262447 |url-access=registration |s2cid=118329153}}</ref><ref>{{Cite OEIS|A060283|Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).|access-date=2024-04-02}}</ref> whose sum when [[Cyclic number#Relation to repeating decimals|cycling]] back to [[1]] is equal to 28.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)