Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Absolute convergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sums of more general elements == The same definition can be used for series <math display=inline>\sum_{n=0}^{\infty} a_n</math> whose terms <math>a_n</math> are not numbers but rather elements of an arbitrary [[Topological abelian group|abelian topological group]]. In that case, instead of using the [[absolute value]], the definition requires the group to have a [[Norm (mathematics)|norm]], which is a positive real-valued function <math display=inline>\|\cdot\|: G \to \R_+</math> on an abelian group <math>G</math> (written [[Abelian group#Notation|additively]], with identity element 0) such that: # The norm of the identity element of <math>G</math> is zero: <math>\|0\| = 0.</math> # For every <math>x \in G,</math> <math>\|x\| = 0</math> implies <math>x = 0.</math> # For every <math>x \in G,</math> <math>\|-x\| = \|x\|.</math> # For every <math>x, y \in G,</math> <math>\|x+y\| \leq \|x\| + \|y\|.</math> In this case, the function <math>d(x,y) = \|x-y\|</math> induces the structure of a [[metric space]] (a type of [[topology]]) on <math>G.</math> Then, a <math>G</math>-valued series is absolutely convergent if <math display=inline>\sum_{n=0}^{\infty} \|a_n\| < \infty.</math> In particular, these statements apply using the norm <math>|x|</math> ([[absolute value]]) in the space of real numbers or complex numbers. === In topological vector spaces === If <math>X</math> is a [[topological vector space]] (TVS) and <math display=inline>\left(x_\alpha\right)_{\alpha \in A}</math> is a (possibly [[uncountable]]) family in <math>X</math> then this family is '''absolutely summable''' if<ref>{{Schaefer Wolff Topological Vector Spaces|edition=2|pp=179β180}}</ref> # <math display=inline>\left(x_\alpha\right)_{\alpha \in A}</math> is '''summable''' in <math>X</math> (that is, if the limit <math display=inline>\lim_{H \in \mathcal{F}(A)} x_H</math> of the [[Net (mathematics)|net]] <math>\left(x_H\right)_{H \in \mathcal{F}(A)}</math> converges in <math>X,</math> where <math>\mathcal{F}(A)</math> is the [[directed set]] of all finite subsets of <math>A</math> directed by inclusion <math>\subseteq</math> and <math display=inline>x_H := \sum_{i \in H} x_i</math>), and # for every continuous [[seminorm]] <math>p</math> on <math>X,</math> the family <math display="inline">\left(p \left(x_\alpha\right)\right)_{\alpha \in A}</math> is summable in <math>\R.</math> If <math>X</math> is a normable space and if <math display=inline>\left(x_\alpha\right)_{\alpha \in A}</math> is an absolutely summable family in <math>X,</math> then necessarily all but a countable collection of <math>x_\alpha</math>'s are 0. Absolutely summable families play an important role in the theory of [[nuclear space]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)