Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Airy function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Asymptotic formulae== [[File:Mplwp airyai asymptotic.svg|thumb|320px|Ai(blue) and sinusoidal/exponential asymptotic form of Ai(magenta)]] [[File:Mplwp airybi asymptotic.svg|thumb|320px|Bi(blue) and sinusoidal/exponential asymptotic form of Bi(magenta)]] As explained below, the Airy functions can be extended to the complex plane, giving [[entire function]]s. The asymptotic behaviour of the Airy functions as {{mvar|{{abs|z}}}} goes to infinity at a constant value of {{math|[[arg (mathematics)|arg]](''z'')}} depends on {{math|arg(''z'')}}: this is called the [[Stokes phenomenon]]. For {{math|{{abs|arg(''z'')}} < ''Ο''}} we have the following [[asymptotic formula]] for {{math|Ai(''z'')}}:<ref name=":0">{{harvtxt|Abramowitz|Stegun|1983|p=448|ignore-err=yes}}, Eqns 10.4.59, 10.4.61</ref> <math display="block"> \operatorname{Ai}(z)\sim \dfrac{1}{2\sqrt\pi\,z^{1/4}} \exp\left(-\frac{2}{3}z^{3/2}\right) \left[ \sum_{n=0}^{\infty} \dfrac{(-1)^n \, \Gamma\!\left(n+\frac{5}{6}\right) \, \Gamma\!\left(n+\frac{1}{6}\right) \left(\frac{3}{4}\right)^n}{2\pi \, n! \, z^{3n/2}} \right].</math> or<math display="block"> \operatorname{Ai}(z)\sim \dfrac{e^{-\zeta}}{4\pi^{3/2}\,z^{1/4}} \left[ \sum_{n=0}^{\infty} \dfrac{\Gamma\!\left(n+\frac{5}{6}\right) \, \Gamma\!\left(n+\frac{1}{6}\right)}{n! (-2\zeta)^n} \right].</math> where <math>\zeta = \tfrac 23 z^{3/2}.</math> In particular, the first few terms are<ref>{{Cite web |title=DLMF: Β§9.7 Asymptotic Expansions β£ Airy Functions β£ Chapter 9 Airy and Related Functions |url=https://dlmf.nist.gov/9.7 |access-date=2023-05-11 |website=dlmf.nist.gov}}</ref><math display="block">\operatorname{Ai}(z) = \frac{e^{-\zeta}}{2\pi^{1/2}z^{1/4}}\left(1 - \frac{5}{72 \zeta} + \frac{385}{10368 \zeta^2} + O(\zeta^{-3})\right) </math> There is a similar one for {{math|Bi(''z'')}}, but only applicable when {{math|{{abs|arg(''z'')}} < ''Ο''/3}}: <math display="block"> \operatorname{Bi}(z)\sim \frac{1}{\sqrt\pi\,z^{1/4}} \exp\left(\frac{2}{3}z^{3/2}\right) \left[ \sum_{n=0}^{\infty} \dfrac{ \Gamma\!\left(n+\frac{5}{6}\right) \, \Gamma\!\left(n+\frac{1}{6}\right) \left(\frac{3}{4}\right)^n}{2\pi \, n! \, z^{3n/2}} \right].</math> A more accurate formula for {{math|Ai(''z'')}} and a formula for {{math|Bi(''z'')}} when {{math|''Ο''/3 < {{abs|arg(''z'')}} < ''Ο''}} or, equivalently, for {{math|Ai(β''z'')}} and {{math|Bi(β''z'')}} when {{math|{{abs|arg(''z'')}} < 2''Ο''/3}} but not zero, are:<ref name=":0" /><ref name=":1">{{harvtxt|Abramowitz|Stegun|1983|p=448|ignore-err=yes}}, Eqns 10.4.60 and 10.4.64</ref><math display="block">\begin{align} \operatorname{Ai}(-z) \sim&{} \ \frac{1}{\sqrt\pi\,z^{1/4}} \sin\left( \frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{5}{6} \right) \, \Gamma\!\left(2n+\frac{1}{6}\right) \left(\frac{3}{4} \right)^{2n}}{2\pi \, (2n)! \, z^{3n}} \right] \\[6pt] &{}-\frac{1}{\sqrt\pi \, z^{1/4}} \cos\left(\frac{2}{3}z^{3/2}+\frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{11}{6}\right) \, \Gamma\!\left(2n + \frac{7}{6}\right) \left(\frac{3}{4}\right)^{2n+1}}{2\pi \, (2n+1)! \, z^{3n\,+\,3/2}} \right] \\[6pt] \operatorname{Bi}(-z) \sim&{} \frac{1}{\sqrt\pi \, z^{1/4}} \cos \left(\frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{5}{6}\right) \, \Gamma\!\left(2n + \frac{1}{6}\right) \left(\frac{3}{4}\right)^{2n}}{2\pi \, (2n)! \, z^{3n}} \right] \\[6pt] &{}+ \frac{1}{\sqrt\pi\,z^{\frac{1}{4}}} \sin\left(\frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{11}{6}\right) \, \Gamma\!\left(2n + \frac{7}{6}\right) \left(\frac{3}{4}\right)^{2n+1}}{2\pi \, (2n+1)! \, z^{3n\,+\,3/2}} \right]. \end{align}</math> When {{math|1={{abs|arg(''z'')}} = 0}} these are good approximations but are not asymptotic because the ratio between {{math|Ai(β''z'')}} or {{math|Bi(β''z'')}} and the above approximation goes to infinity whenever the sine or cosine goes to zero. [[Asymptotic analysis|Asymptotic expansions]] for these limits are also available. These are listed in (Abramowitz and Stegun, 1983) and (Olver, 1974). One is also able to obtain asymptotic expressions for the derivatives {{math|Ai'(z)}} and {{math|Bi'(z)}}. Similarly to before, when {{math|{{abs|arg(''z'')}} < ''Ο''}}:<ref name=":1" /> <math display="block"> \operatorname{Ai}'(z)\sim -\dfrac{z^{1/4}}{2\sqrt\pi\,} \exp\left(-\frac{2}{3}z^{3/2}\right) \left[ \sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \dfrac{(-1)^n \, \Gamma\!\left(n + \frac{5}{6}\right) \, \Gamma\!\left(n + \frac{1}{6}\right) \left(\frac{3}{4}\right)^n}{2\pi \, n! \, z^{3n/2}} \right].</math> When {{math|{{abs|arg(''z'')}} < ''Ο''/3}} we have:<ref name=":1" /> <math display="block"> \operatorname{Bi}'(z)\sim \frac{z^{1/4}}{\sqrt\pi\,} \exp\left(\frac{2}{3}z^{3/2}\right) \left[ \sum_{n=0}^{\infty} \frac{1+6n}{1-6n} \dfrac{ \Gamma\!\left(n + \frac{5}{6}\right) \, \Gamma\!\left(n + \frac{1}{6}\right) \left(\frac{3}{4}\right)^n}{2\pi \, n! \, z^{3n/2}} \right].</math> Similarly, an expression for {{math|Ai'(β''z'')}} and {{math|Bi'(β''z'')}} when {{math|{{abs|arg(''z'')}} < 2''Ο''/3}} but not zero, are<ref name=":1" /> <math display="block">\begin{align} \operatorname{Ai}'(-z) \sim&{} -\frac{z^{1/4}}{\sqrt\pi\,} \cos\left(\frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \frac{1+12n}{1-12n} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{5}{6}\right) \, \Gamma\!\left(2n + \frac{1}{6}\right) \left(\frac{3}{4}\right)^{2n}}{2\pi \, (2n)! \, z^{3n}} \right] \\[6pt] &{}-\frac{z^{1/4}}{\sqrt\pi\,} \sin\left(\frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \frac{7+12n}{-5-12n} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{11}{6}\right) \, \Gamma\!\left(2n + \frac{7}{6}\right) \left(\frac{3}{4}\right)^{2n+1}}{2\pi \, (2n+1)! \, z^{3n\,+\,3/2}} \right] \\[6pt] \operatorname{Bi}'(-z) \sim&{} \ \frac{z^{1/4}}{\sqrt\pi\,} \sin\left(\frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \frac{1+12n}{1-12n} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{5}{6}\right) \, \Gamma\!\left(2n + \frac{1}{6}\right) \left(\frac{3}{4}\right)^{2n}}{2\pi \, (2n)! \, z^{3n}} \right] \\[6pt] &{}-\frac{z^{1/4}}{\sqrt\pi\,} \cos\left(\frac{2}{3}z^{3/2} + \frac{\pi}{4} \right) \left[ \sum_{n=0}^{\infty} \frac{7+12n}{-5-12n} \dfrac{(-1)^n \, \Gamma\!\left(2n + \frac{11}{6}\right) \, \Gamma\!\left(2n + \frac{7}{6}\right) \left(\frac{3}{4}\right)^{2n+1}}{2\pi \, (2n+1)! \, z^{3n\,+\,3/2}} \right] \\ \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)